
Noname manuscript No.
(will be inserted by the editor)

First-order definable counting-only queries

Jelle Hellings · Marc Gyssens · Dirk Van

Gucht · Yuqing Wu

the date of receipt and acceptance should be inserted later

Abstract Many data sources can be represented easily by collections of sets of
objects. For several practical queries on such collections of sets of objects, the
answer does not depend on the precise composition of these sets, but only on the
number of sets to which each object belongs. This is the case k=1 for the more
general situation where the query answer only depends on the number of sets to
which each collection of at most k objects belongs. We call such queries k-counting-
only. Here, we focus on k-SyCALC, i.e., k-counting-only queries that are first-order
definable. As k-SyCALC is semantically defined, however, it is not surprising that
it is already undecidable whether a first-order query is in 1-SyCALC. Therefore,
we introduce SimpleCALC-k, a syntactically defined (strict) fragment of k-SyCALC.
It turns out that many practical queries in k-SyCALC can already be expressed
in SimpleCALC-k. We also define the query language GCount-k, which expresses
counting-only queries directly by using generalized counting terms, and show that
this language is equivalent to SimpleCALC-k. We prove that the k-counting-only
queries form a non-collapsing hierarchy: for every k, there exist (k+1)-counting-
only queries that are not k-counting-only. This result specializes to both Simple-

CALC-k and k-SyCALC. Finally, we establish a strong dichotomy between 1-SyCALC
and SimpleCALC-k on the one hand and 2-SyCALC on the other hand by showing

This is a revised and extended version of the conference paper ‘First-order definable counting-
only queries’, presented at the 10th International Symposium on Foundations of Information
and Knowledge Systems, Budapest, Hungary (FoIKS 2018) [15].

This material is based on work supported by the National Science Foundation under Grant
No. NSF 1438990.

Jelle Hellings
Exploratory Systems Lab, Department of Computer Science, University of California, Davis,
CA 95616-8562, USA and Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium

Marc Gyssens
Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium

Dirk Van Gucht
Indiana University, 919 E 10th St, Bloomington, IN 47408, USA

Yuqing Wu
Pomona College, 185 E 6th St., Claremont, CA 91711, USA

2 Jelle Hellings et al.

pl
Alice
Bob

db
Alice
Bob
Carol

ai
Dan

Alice

Bob

Carol

Dan

pl

db

ai

Fig. 1 Left, a bag-of-sets dataset. Right, the same dataset represented as a bipartite graph.

that satisfiability, validity, query containment, and query equivalence are decidable
for the former two languages, but not for the latter one.

Keywords Bag of sets · Counting-only query · First-order definable query ·
Satisfiability

1 Introduction

Often, (parts of) queries can be viewed as operating on transaction databases [9],
bipartite graphs, binary many-to-many relations, or, equivalently, on bag of sets.
As an example, consider the bag-of-sets dataset of Figure 1, left, in which each set
represents a course and contains the students taking that course. This bag of sets
can alternatively be interpreted as the bipartite graph, shown in Figure 1, right.

Many practical queries on bags of sets turn out to be counting-only: in order
to answer them, it is not necessary to know to which sets each object belongs,
but only to how many sets each object belongs. As examples, consider the queries
‘return students who take at least 2 courses’, expressed by

Q1 = {〈x〉 | count(x) ≥ 2},

and ‘return pairs of students who take the same number of courses’, expressed by

Q2 = {〈x, y〉 | (x 6= y) ∧ count(x) = count(y)}.

In the above expressions, “count(·)” counts the number of sets (here, courses) to
which the collection of arguments (here, a single student) belongs. Clearly, one
need not know which courses each student takes to answer Q1 or Q2, but only
how many courses each student takes. Next, consider the queries ‘return pairs of
distinct students which take a common course’, expressed by

Q3 = {〈x, y〉 | (x 6= y) ∧ count(x, y) ≥ 1},

and ‘return pairs of distinct students which take the same courses’, expressed by

Q4 = {〈x, y〉 | (x 6= y) ∧ count(x, y) = count(x) ∧ count(x, y) = count(y)}.

Notice that Q3 is a basic intersection query and Q4 is a basic equivalence query.
Both can be answered by counting not only (i) how many courses each student
takes, but also (ii) how many courses each pair of students share. For k ≥ 0, we call
a query k-counting-only if it can be answered by only counting to how many sets
each collection of at most k objects belongs. Hence, Q1 and Q2 are 1-counting-only,

First-order definable counting-only queries 3

pl
Alice
Bob

db
Alice
Carol

ai
Bob
Carol

vr

pl
Alice
Bob
Carol

db
Alice

ai
Bob

vr
Carol

count() = 4;

count(A) = 2;

count(B) = 2;

count(C) = 2;

count(A,B) = 1;

count(A,C) = 1;

count(B,C) = 1.

Fig. 2 Left, Bags of sets S1 (top) and S2 (bottom), both assigning students to four courses.
Right, The count-information shared between S1 and S2.

while Q3 and Q4 are 2-counting-only. Similarly, the Boolean query ‘does there exist
a course taken by 3 students’, expressed by

Q5 = {〈〉 | ∃x∃y∃z ((x 6= y ∧ x 6= z ∧ y 6= z) ∧ count(x, y, z) ≥ 1)},

is 3-counting-only. In contrast, the Boolean query ‘there are at least 3 courses’,
expressed by

Q6 = {〈〉 | count() ≥ 3},

can already be answered at the scheme level, and is therefore 0-counting-only.
Observe that the counting-only queries Q3 and Q4 only differ in the use of the

generalized quantifiers ‘takes some’ versus ‘takes all and only’. Similar familiar fam-
ilies of counting-only queries can be formulated using other generalized quantifiers
such as ‘takes only’, ‘takes all’, ‘takes no’, ‘takes at least k’, and ‘takes all but k’.
Such queries are not only of relevance in the study of generalized quantifiers [4,
21,26], but also play an obvious central role in the frequent itemset problem [9]. In
essence, bag-of-set-like data models and counting-only queries can also be found in
the differential constraints of Sayrafi et al. [23], citation analysis and bibliometrics [6],
the symmetric Boolean functions of Quine [13,22], finite set combinatorics [2], and
the data spaces of Fletcher et al. [8], either explicitly or implicitly.

A more formal way to capture the notion of k-counting-only query is that
such queries cannot distinguish between bags of sets which share the same up-
to-k counting information. Consider, e.g., the bags of sets S1 and S2 of Figure 2.
Clearly, S1 and S2 agree on all up-to-2 counting information, but disagree on
count(Alice,Bob,Carol). Hence, Q1–Q4 and Q6 yield the same result on S1 and S2,
whereas Q5, which is 3-counting-only, evaluates to false on S1 and true on S2.

Finally, notice that the concept of counting-only queries applies to more gen-
eral data models than the bag-of-sets model. Consider, e.g., a database with a
student-course relation SC and a department-course relation DC, with the obvi-
ous meaning. On this database, query

P = {〈x, y〉 | count({z | SC(x, z) ∧DC(y, z)}) = count({z | SC(x, z)})}

returns student-department pairs in which the student only takes courses offered
by that department. This query, conceptually similar to Q4 above, certainly has a
counting-only flavor.

Motivated by the above, we believe that the class of counting-only queries
deserves a broader understanding. Our notion of k-counting-only queries, k ≥ 0,
significantly generalizes the notion of counting-only queries of Gyssens et al. [13],
which only captures the case k = 1 in this present work.

4 Jelle Hellings et al.

Since many interesting counting-only queries are first-order definable, including
Q1 and Q3–Q6, we study more specifically the class of first-order definable count-
ing-only queries on the bags-of-sets data model. To do so, we use (a variation
of) the two-sorted first-order logic SyCALC of Gyssens et al [13]. In this logic, we
have object variables, set name variables, and a set-membership relation relat-
ing objects and set names. Within SyCALC, we can express simple count terms
such as “count(x) ≥ 2” and “count(x, y) ≥ 1”, of Q1 and Q3, in a straightforward
manner. We also semantically define the class k-SyCALC of all first-order definable
k-counting-only queries. As this class is semantically defined, it is not surprising
that it is already undecidable whether a SyCALC query is in k-SyCALC. As an al-
ternative to k-SyCALC, we define the query language GCount-k, the language that
expresses counting-only queries by using so-called generalized counting terms, which
are k-counting-only. We show that GCount-k queries are all in SyCALC. From the
relation between GCount and SyCALC, we derive a syntactic restriction of k-SyCALC,
SimpleCALC. Our main results are as follows:

1. We semantically define the class of k-counting-only queries, and show that
they include many practically relevant first-order-definable queries. We also
show that not all counting-only queries are first-order-definable.

2. We formalize GCount-k, k ≥ 0, as the class of queries that can be written using
so-called generalized counting terms. We show that GCount-k captures many
practical queries in k-SyCALC. This is in particular the case for those that can
be written using simple “count(·)” terms in a way that shall be made precise.
Examples of such queries are Q1 and Q3–Q6.

3. We define the class SimpleCALC-k, k ≥ 0, as a syntactic fragment of k-SyCALC.
We show that the classes SimpleCALC-k and GCount-k are equivalent.

4. We establish that the k-counting-only queries form a non-collapsing hierarchy:
for every k, k ≥ 0, there are (k+1)-counting-only queries that are not k-count-
ing-only. This result specializes to k-SyCALC, SimpleCALC-k, and GCount-k.

5. We show that 1-SyCALC, SimpleCALC-k, and GCount-k, k ≥ 0, have the finite
model property and use that to prove that satisfiability (and, hence, validity,
query containment, and query equivalence) is decidable for these classes. We
also establish that satisfiability is NEXPTIME-complete for SimpleCALC-k and
GCount-k, and is in EXPTIME for 1-SyCALC. The decidability of 1-SyCALC and
SimpleCALC-k, k ≥ 0, sets them apart from many other fragments of first-order
logic.
In particular, this result identifies a large “well-behaved” fragment of first-
order logic in which many practical queries can be expressed and which is
distinct from the usual classes of “well-behaved” first-order queries such as
the conjunctive queries, the monadic first-order logic, and the two-variable
fragments of first-order logic [1,3,10,11,17].

6. In contrast to the above, satisfiability for 2-SyCALC is shown to be undecidable.
Hence, proving a strong dichotomy between 1-SyCALC and SimpleCALC-k, k ≥ 0,
on the one hand and 2-SyCALC on the other hand.

This is a revised and extended version of Hellings et al. [15]. Not only did we add
full proofs, but we also managed to simplify proofs significantly, and we introduced
GCount-k as an alternative syntactic language for first-order definable counting-
only queries. We were also able to show that SimpleCALC-k and GCount-k are

First-order definable counting-only queries 5

equivalent (item 2 in the above). Finally, we settled the complexity of satisfiability
for SimpleCALC and 1-SyCALC.

2 Bags of sets and counting-only queries

Let D and N be two disjoint infinitely enumerable domains of objects and names.
We represent finite bags of finite sets by structures, as follows:

Definition 2.1 A structure S is a pair S = (N, γ), with N ⊂ N a finite set of set

names and γ ⊂ D ×N a finite set-membership relation. For n ∈ N,

objects(n; S) = {o | (o,n) ∈ γ}

is the set of objects that are a member of the set named n. We write adom(S) =⋃
n∈N objects(n; S) for the active domain of S. If A ⊆ D, then S|A denotes the

structure (N, γ ∩ (A×N)).

Structures explicitly define the set N of set names they use, whereas objects
are only defined via the set-membership function γ. In this way, N allows the
representation of empty sets.

Example 2.2 The bag-of-sets dataset of Figure 1 is represented by the structure
S1 = (N, γ) with

N = {pl,db,ai};
γ = {(Alice, pl), (Bob, pl), (Alice,db), (Bob,db), (Carol,db), (Dan,ai)}.

If we were to add course vr to N without changing γ, this would mean that vr is
offered but no student takes it.

A query Q maps a structure to a relation of fixed arity over objects. We write
[[Q]]S to denote the evaluation of Q on structure S. If the arity of Q is 0, then Q is
Boolean, where false and true are respectively represented by ∅ and {〈〉}, the only
two relations of arity 0.

A formal definition of counting-only queries requires a formal definition of when
two structures convey the same counting information:

Definition 2.3 Let S = (N, γ) be a structure and I ⊂ D a finite set of objects,
often referred to as an itemset. The cover of I in S is defined by

cover(I; S) = {n | (n ∈ N) ∧ (I ⊆ objects(n; S))}.

The support of I in S is defined by [[support(I)]]S = |cover(I; S)|. Let k ≥ 0. Struc-
tures S1 and S2 are exactly-k-counting-equivalent if [[support(I)]]S1

= [[support(I)]]S2

for every itemset I with |I| = k. Structures S1 and S2 are k-counting-equivalent if
they are exactly-j-counting-equivalent for all j, 0 ≤ j ≤ k.

We observe that [[support(I)]]S is the semantical interpretation of a count(·)-
term with respect to set of objects I and structure S.

Structures are exactly-0-counting-equivalent if they have the same number of
set names. Hence, for all k, k ≥ 0, k-counting-equivalent structures have the same
number of set names.

6 Jelle Hellings et al.

Example 2.4 Consider the structures S1 and S2 in Figure 2. Both have four set
names representing courses. In both S1 and S2, each student takes two courses,
and each pair of distinct students shares one common course. Since the itemset
{Alice,Bob,Carol} has no cover in S1, but is covered by pl in S2, we conclude that
S1 and S2 are 2-counting-equivalent, but not 3-counting-equivalent.

We are now ready to define k-counting-only queries:

Definition 2.5 Let k ≥ 0. A query q is k-counting-only if, for every pair of k-count-
ing-equivalent structures S1 and S2, we have [[q]]S1

= [[q]]S2
. A query is counting-only

if there exists k, k ≥ 0, for which it is k-counting-only.1

Notice that k-counting-only queries are also j-counting-only for all j, 0 ≤ j ≤ k.

Example 2.6 As mentioned in the Introduction, Q1 and Q2 are 1-counting-only, Q3
and Q4 are 2-counting-only, Q5 is 3-counting-only, and Q6 is 0-counting-only. Query
Q5 is not 2-counting-only, since, on the 2-counting-equivalent structures S1 and
S2 in Figure 2, it returns different results. Notice that Q2 involves pairs of objects
despite being 1-counting-only. To illustrate that this generalizes, consider

Q7 = {〈〉 | ∃x∃y1∃y2 (x 6= y1) ∧ (x 6= y2) ∧ (y1 6= y2) ∧
count(y1) = count(x, y1) ∧ count(y2) = count(x, y2) ∧

count(x) = count(x, y1) + count(x, y2)− count(x, y1, y2)}.

On the student-courses examples, Q7 returns true if there is a student who takes
exactly the courses taken by a pair of distinct other students combined. Clearly,
it is 3-counting-only. However, Q7 is also 2-counting-only, as it is equivalent to

Q
′
7 = {〈〉 | ∃x∃y1∃y2 (x 6= y1) ∧ (x 6= y2) ∧ (y1 6= y2) ∧

count(y1) = count(x, y1) ∧ count(y2) = count(x, y2) ∧
count(x) = count(x, y1) + count(x, y2)− count(y1, y2)}.

So, some 2-counting-only queries can be used to reason on more than two objects.

3 A query language that uses counting information

We observe that k-counting information can be used to express the existence of any
set-membership relation between at most k objects. To do so, we use the notion
of generalized support, borrowed from Calders et al. [7].

Definition 3.1 The generalized cover of itemsets I and E in structure S = (N, γ)
is defined by

gcover(I;E; S) = {n | (n ∈ N) ∧ (I ⊆ objects(n; S)) ∧ (objects(n; S) ∩ E = ∅)}

and the generalized support of I and E in S is defined by [[gsupport(I;E)]]S =
|gcover(I;E; S)|.

1 We use the term counting-only in a broader sense than Gyssens et al. [13], who designated
by it only the first-order definable queries that are 1-counting-only.

First-order definable counting-only queries 7

Observe that [[support(I)]]S = [[gsupport(I; ∅)]]S, justifying the name “gener-
alized support”. Additionally, I ∩ E 6= ∅ implies both gcover(I;E; S) = ∅ and
[[gsupport(I;E)]]S = 0.

Example 3.2 Let S be the dataset presented in Figure 1. We have

gcover(Alice; ∅; S) = {pl,db};
gcover(Alice;Carol; S) = {pl}.

Hence,

[[gsupport(Alice; ∅)]]S = [[support(Alice)]]S = 2;

[[gsupport(Alice;Carol)]]S = 1.

Using the inclusion-exclusion principle [7], which allows reasoning about gen-
eralized-support terms in terms of normal support terms, we can show that gen-
eralized-support terms [[gsupport(I;E)]]S are fully expressible using |I∪E|-support
terms only:

Proposition 3.3 Let S1 and S2 be k-counting-equivalent structures and let I,E be

itemsets with |I ∪ E| ≤ k. We have [[gsupport(I;E)]]S1
= [[gsupport(I;E)]]S2

.

The following example illustrates the inclusion-exclusion principle and how it
yields Proposition 3.3:

Example 3.4 Let S1 and S2 be structures that are 4-counting-equivalent. In the
following, we shall show that

[[gsupport(Alice,Bob;Carol,Dan)]]S1
= [[gsupport(Alice,Bob;Carol,Dan)]]S2

.

We write A, B, C, D as shorthands for Alice, Bob, Carol, and Dan, respectively.
Let i ∈ {1, 2}. Consider the set cover(A,B; Si). This set consists of all set names

in Si that are related to both Alice and Bob. We can partition the set names in
cover(A,B; Si) based on whether they contain Carol and/or Dan. Doing so yields
the following:

cover(A,B; Si) = cover(A,B,C,D; Si) ∪ gcover(A,B,C;D; Si) ∪
gcover(A,B,D;C; Si) ∪ gcover(A,B;C,D; Si).

From the above, we derive the following:

[[gsupport(A,B;C,D)]]Si
= [[support(A,B)]]Si

− [[support(A,B,C,D)]]Si
−

[[gsupport(A,B,C;D)]]Si
− [[gsupport(A,B,D;C)]]Si

.

Likewise, we observe the following relationships

[[gsupport(A,B,C;D)]]Si
= [[support(A,B,C)]]Si

− [[support(A,B,C,D)]]Si

[[gsupport(A,B,D;C)]]Si
= [[support(A,B,D)]]Si

− [[support(A,B,C,D)]]Si

8 Jelle Hellings et al.

Combining the above, we derive

[[gsupport(A,B;C,D)]]Si
= [[support(A,B)]]Si

− [[support(A,B,C)]]Si
−

[[support(A,B,D)]]Si
+ [[support(A,B,C,D)]]Si

.

Hence, we are able to express [[gsupport(A,B;C,D)]]Si
using only [[support(I)]]Si

-
terms, |I| ≤ 4. As S1 and S2 are 4-counting-equivalent, they must agree on all these
terms, from which we finally can conclude [[gsupport(Alice,Bob;Carol,Dan)]]S1

=
[[gsupport(Alice,Bob;Carol,Dan)]]S2

.

Akin to the relationship between the support and count(·)-terms, we can in-
troduce gcount(·)-terms and relate them to the generalized support. We introduce
basic gcount(·) terms of the form gcount(X;Y) ∼ c, with X and Y sets of object vari-
ables, “∼” a comparison, and c a constant. These gcount(·)-terms often simplify
the expression of counting-only queries:2

Example 3.5 The queries Q1, Q3, Q5, and Q6 can be expressed with basic gcount(·)
terms. Query Q2 cannot be rewritten with basic gcount(·) terms, because it is
not first-order definable [18] (see also Proposition 7.3). Query Q4 is equivalent to
Q′4 = {〈x, y〉 | (x 6= y) ∧ gcount(x; y) = 0 ∧ gcount(y;x) = 0}. Finally, Q7 and Q′7 are
equivalent to

Q
′′
7 = {〈〉 | ∃x∃y1∃y2 (x 6= y1) ∧ (x 6= y2) ∧ (y1 6= y2) ∧

gcount(x; y1, y2) = 0 ∧ gcount(y1;x) = 0 ∧ gcount(y2;x) = 0}.

Next, we formalize the counting-only query language used in Example 3.5:

Definition 3.6 GCount formulae are defined by the grammar

e := true | gcount(X;Y) ≥ c | x = y | e ∨ e | ¬e | ∃x e,

in which the lowercase variables x and y represent objects and the uppercase
variables X and Y denote sets of objects (which we usually write as a sequence of
lowercase variables). We use the usual logical shorthand notations. We also use
the following shorthand notations

gcount(X;Y) < c ≡ ¬ gcount(X;Y) ≥ c;
gcount(X;Y) ≤ c ≡ ¬(gcount(X;Y) ≥ c+ 1);

gcount(X;Y) = c ≡ gcount(X;Y) ≥ c ∧ gcount(X;Y) ≤ c;
gcount(X;Y) > c ≡ ¬ gcount(X;Y) ≤ c.

As to the semantics of a GCount formula e, let S = (N, γ) be a structure and
νD a mapping from object variables to objects in D. We define the relationship

2 These terms play a central role in the normal form of 1-counting-only first-order definable
queries of Gyssens et al. [13]: gteq(o, c) corresponds to [[gsupport(o; ∅)]]S ≥ c and cogteq(o, c)
to [[gsupport(∅; o)]]S ≥ |N| − c.

First-order definable counting-only queries 9

(S, νD) � e, with all free variables of e in the domain of νD, as follows:

(S, νD) � true;

(S, νD) � gcount(X;Y) ≥ c if [[gsupport(νD(X); νD(Y))]]S ≥ c;
(S, νD) � x = y if νD(x) = νD(y);

(S, νD) � e1 ∨ e2 if (S, νD) � e1 or (S, νD) � e2;

(S, νD) � ¬e if (S, νD) 2 e
(S, νD) � ∃x e if there exists o ∈ D with (S, νD[x 7→ o]) � e.

In the above, M [α 7→ β], for any mapping M and values α and β, denotes M

modified by mapping α to β.

Let e be a GCount formula with free object variables x1, . . . , xm and let S =
(N, γ) be a structure. We define the evaluation of e on S by

[[e]]S = {〈o1, . . . , om〉 | (S, {x1 7→ o1, . . . , xm 7→ om}) � e}.

We refer to GCount formulae in which terms gcount(X;Y) ≥ c are restricted
to have |X ∪ Y| ≤ k as the class GCount-k. We refer to GCount formulae in which
object quantification is not used as BasicGCount. We refer to BasicGCount formulae
in which at most k free object variables are present as BasicGCount-k. We refer to
the class of BasicGCount-k formulae in which terms gcount(X;Y) ≥ c are restricted
to have c ≤ d as the class BasicGCount[d]-k.

In Section 5, we shall formally prove that all queries in GCount are counting-
only.

4 A first-order logic for bag-of-sets structures

In the previous section, we defined the query language GCount, which is already
powerful enough to express many practical counting-only queries. Next, we will
study the relationship between, on the one hand, counting-only queries and GCount,
and, on the other hand, first-order definable queries. To do so, we use a two-
sorted variant of first-order logic denoted SyCALC, based on the work of Gyssens
et al. [13].3

Definition 4.1 Partial SyCALC formulae are defined by the grammar

e := true | Γ (x,X) | x = y | X = Y | e ∨ e | ¬e | ∃x e | ∃X e,

in which the lowercase variables x and y represent objects, the uppercase variables
X and Y denote set names, and Γ is interpreted as the set-membership relation.
We also allow the usual shorthands.

As to the semantics of a partial SyCALC formula e, let S = (N, γ) be a structure,
νD a mapping from object variables to objects in D, and νN a mapping from set

3 Gyssens et al. [13] disallow object comparisons (x = y in the grammar).

10 Jelle Hellings et al.

name variables to set names in N. We define the relationship (S, νD, νN) � e, with
all free variables of e in the union of the domains of νD and νN, as follows:

(S, νD, νN) � true;

(S, νD, νN) � Γ (x,X) if (νD(x), νN(X)) ∈ γ;

(S, νD, νN) � x = y if νD(x) = νD(y);

(S, νD, νN) � X = Y if νN(X) = νN(Y);

(S, νD, νN) � e1 ∨ e2 if (S, νD, νN) � e1 or (S, νD, νN) � e2;

(S, νD, νN) � ¬e if (S, νD, νN) 2 e;
(S, νD, νN) � ∃x e if there exists o ∈ D with (S, νD[x 7→ o], νN) � e;

(S, νD, νN) � ∃X e if there exists n ∈ N with (S, νD, νN[X 7→ n]) � e.

Let e be a partial SyCALC formula with free object variables x1, . . . , xm and free
set name variables X1, . . . , Xn, and let S = (N, γ) be a structure. We define the
evaluation of e on S by [[e]]S = {〈o1, . . . , om,n1, . . . ,nn〉 | (S, νD, νN) � e} in which
νD = {x1 7→ o1, . . . , xm 7→ om} and νN = {X1 7→ n1, . . . , Xn 7→ nn}. A SyCALC

query is a partial SyCALC formula without free set name variables.4,

Example 4.2 Queries Q1 and Q3–Q7 are all expressible in SyCALC:

Q1 = {〈x〉 | ∃X1∃X2 ((X1 6= X2) ∧ Γ (x,X1) ∧ Γ (x,X2))};
Q3 = {〈x, y〉 | (x 6= y) ∧ ∃X (Γ (x,X) ∧ Γ (y,X))};
Q4 = {〈x, y〉 | (x 6= y) ∧ ∀X (Γ (x,X) ⇐⇒ Γ (y,X))};
Q5 = {〈〉 | ∃X∃x∃y∃z ((x 6= y) ∧ (x 6= z) ∧ (y 6= z) ∧

Γ (x,X) ∧ Γ (y,X) ∧ Γ (z,X))};
Q6 = {〈〉 | ∃X1∃X2∃X3 ((X1 6= X2) ∧ (X1 6= X3) ∧ (X2 6= X3))};
Q7 = {〈〉 | ∃x∃y1∃y2 ((x 6= y1) ∧ (x 6= y2) ∧ (y1 6= y2) ∧

(∀X (Γ (x,X) ⇐⇒ (Γ (y1, X) ∨ Γ (y2, X)))))}.

For k ≥ 0, k-SyCALC denotes the k-counting-only SyCALC queries. Not all
counting-only queries are in SyCALC, however. An example is the 1-counting-only
query Q2 [18] (see also Proposition 7.3). Also, not all SyCALC queries are counting-
only. To show this, we exhibit a SyCALC query Q and, for every k, k ≥ 1, a pair
of k-counting-equivalent structures S1,k and S2,k such that Q can distinguish S1,k

and S2,k. To do so, we generalize the ideas underlying Example 2.4:

Proposition 4.3 Let A be a finite nonempty itemset, let S1,A be the structure repre-

senting the bags of sets {T | (T ⊆ A)∧ (even(|A−T|))}, and let S2,A be the structure

representing the bags of sets {T | (T ⊆ A) ∧ (odd(|A −T|))}. We have the following:

1. S1,A is (|A| − 1)-counting-equivalent to S2,A.

2. S1,A is not exactly-|A|-counting-equivalent to S2,A.

3. Only one of the structures has a set name to which no objects are related.

4 We also write a SyCALC query e as {〈x1, . . . , xm〉 | e} to show the free object variables
and their order explicitly.

First-order definable counting-only queries 11

Proof Statement 2 follows from the observation that only the itemset A has |A|
objects, and only S1 has a set name that covers this itemset. Statement 3 follows
from the observation that ∅ is represented only in S1—if even(|A|)—or only in
S2—if odd(|A|). We now turn to Statement 1. Let k = |A| and I (A an itemset
with |I| = m. We must prove that [[support(I)]]S1

= [[support(I)]]S2
. Consider any

itemset T with I ⊆ T ⊆ A. Let |T| = n. As T contains the objects of I, T is fully
determined by choosing n −m objects among the k −m objects in A − I. Hence,
there are exactly (k−mn−m) of such sets T. Thus, using some well-known combinatorial
techniques (see, e.g., [2]),

[[support(I)]]S1
=
∑

m≤n≤k,
even(k−n)

(k−mn−m) =
∑

0≤j≤k−m,
even(k−m−j)

(k−mj) = 2k−m−1

=
∑

0≤j≤k−m,
odd(k−m−j)

(k−mj) =
∑

m≤n≤k,
odd(k−n)

(k−mn−m) = [[support(I)]]S2
,

completing the proof. ut

Using Proposition 4.3, we now prove the following:

Proposition 4.4 Not all Boolean SyCALC queries are counting-only.

Proof For all k, k ≥ 1, let Ak ⊂ D be a set of objects with |Ak| = k + 1, and let
S1,Ak

and S2,Ak
be as in Proposition 4.3. We see that the Boolean SyCALC query

Q8 = {〈〉 | ∃X∀x (∃Y (Γ (x, Y)) =⇒ Γ (x,X))}

cannot be counting-only, since [[Q8]]S1,Ak
= true and [[Q8]]S2,Ak

= false. ut

Even though not all counting-only queries are first-order definable, Example 4.2
suggests that many counting-only queries are in SyCALC. Actually, all GCount

queries are already in SyCALC:

Proposition 4.5 Let e be a GCount formula. There exists a query Q in SyCALC such

that, for all structures S, [[e]]S = [[Q]]S.

Proof We only need to show how to translate terms gcount(X;Y) ≥ c. We have

gcount(X;Y) ≥ c ≡ ∃Z1 . . .∃Zc
(∧

1≤i<j≤c (Zi 6= Zj) ∧∧
x∈X

(
Γ (x, Z1) ∧ · · · ∧ Γ (x, Zc)

)
∧∧

y∈Y
(
¬Γ (y, Z1) ∧ · · · ∧ ¬Γ (y, Zc)

))
.

ut

5 QuineCALC and SimpleCALC

In Section 3 we introduced GCount, a simple counting-only query language, and in
Section 4 we introduced SyCALC, the first-order definable queries. We also stud-
ied the counting-only SyCALC queries, a semantic fragment of SyCALC. Finally,
in Proposition 4.5, we showed that GCount is in SyCALC. By straightforward in-
spection of the proof of Proposition 4.5, we observe that GCount is not only in

12 Jelle Hellings et al.

SyCALC, but also that every GCount query can be written as a SyCALC query of a
very specific form: no object quantification occurs within the scope of a set name
quantifier. This observation inspires us to define the following syntactic5 query
languages:

Definition 5.1 QuineCALC6 consist of all SyCALC queries that do not use object
quantification. SimpleCALC consists of all queries that are built from QuineCALC

queries using disjunction, negation, and object quantification.

Notice that in SyCALC object and set name quantification can be used without
any restrictions, whereas in SimpleCALC no object quantifier can be used within
the scope of a set name quantifier.

We refer to the class of QuineCALC queries in which at most k free object
variables are present as QuineCALC-k. We refer to the class of SimpleCALC queries
in which every QuineCALC query used is in QuineCALC-k as SimpleCALC-k. We refer
to the class of QuineCALC-k queries with quantifier depth at-most d as the class
QuineCALC[d]-k.

A closer look at the proof of Proposition 4.5 immediately yields the following
refinement of this proposition:

Proposition 5.2

1. Let e be a BasicGCount[d]-k formula. There exists a query Q in QuineCALC[d]-k

such that, for all structures S, [[e]]S = [[Q]]S.

2. Let e be a GCount-k formula. There exists a query Q in SimpleCALC-k such that,

for all structures S, [[e]]S = [[Q]]S.

Next, we show that all SimpleCALC-k queries are k-counting-only. To do so, we
first take a look at QuineCALC-k. From the semantics of QuineCALC-k queries, the
following immediately follows.

Lemma 5.3 Let S = (N, γ) be a structure, Q be a QuineCALC-k query with l free

object variables, l ≤ k, and let o1, . . . , ol ∈ D be l objects, not necessarily distinct. We

have 〈o1, . . . , ol〉 ∈ [[Q]]S if and only if 〈o1, . . . , ol〉 ∈ [[Q]]S|{o1,...,ol}
.

Next, we prove the following property.

Proposition 5.4 Let S1 and S2 be k-counting-equivalent structures, k ≥ 0, with

|adom(S1)| = |adom(S2)| ≤ k. The structures S1 and S2 are isomorphic.

Proof Let S1 = (N1, γ1) and S2 = (N2, γ2). To show that S1 and S2 are isomorphic,
we use the identity on D and construct a bijection b : N1 → N2 that maps each set
name n ∈ N1 to a set name b(n) ∈ N2 with objects(n; S1) = objects(b(n); S2).
When k = 0, |adom(S1)| = |adom(S2)| = 0 and we must have adom(S1) =

5 In Corollary 5.7, we show that these syntactic languages can only express counting-only
queries. We need such syntactically defined languages for this purpose to ensure that we
can easily decide whether an arbitrary SyCALC satisfies the relevant syntactic restrictions.
In contrast, it follows readily from a result by Gyssens et al. [12] that it is already undecidable
whether an arbitrary SyCALC query belongs to the semantically defined language 1-SyCALC.

6 Gyssens et al. [13] introduced the single-object-variable fragment of QuineCALC as a first-
order query language that provides a conservative extension of the symmetric Boolean functions
of Quine [22], hence the name.

First-order definable counting-only queries 13

adom(S2). Otherwise, As S1 and S2 are k-counting-equivalent structures, we must
also have adom(S1) = adom(S2). We denote the set adom(S1) = adom(S2) by
A. Let I ⊂ A and E = A − I, C1 = gcover(I;E; S1), and C2 = gcover(I;E; S2).
By Proposition 3.3, we have |C1| = |C2|. Hence, we can construct a bijection
bI : C1 → C2. By definition, we have, for all I′ ⊆ A and E′ = A − I′ with I′ 6= I,
that gcover(I′;E′; S1) is disjoint from C1 and gcover(I′;E′; S2) is disjoint from C2.
Hence, we can construct b =

⋃
I⊆A bI, and it is straightforward to show that b

satisfies the claimed properties. ut

We are now ready to prove that QuineCALC-k queries are k-counting-only.

Proposition 5.5 Let S1 and S2 be k-counting-equivalent structures, k ≥ 0, and let Q

be a QuineCALC-k query. We have [[Q]]S1
= [[Q]]S2

.

Proof Let Q be a query with free object variables x1, . . . , xl, l ≤ k. Let o1, . . . , ol ∈ D
be l objects, not necessarily distinct. By Lemma 5.3, 〈o1, . . . , ol〉 ∈ [[Q]]S1

if and only
if 〈o1, . . . , ol〉 ∈ [[Q]]S1|{o1,...,ol}

. By Proposition 5.4, S1|{o1,...,ol} and S2|{o1,...,ol} are

isomorphic. Hence, 〈o1, . . . , ol〉 ∈ [[Q]]S1
if and only if 〈o1, . . . , ol〉 ∈ [[Q]]S2|{o1,...,ol}

.

Finally, by Lemma 5.3, 〈o1, . . . , ol〉 ∈ [[Q]]S1
if and only if 〈o1, . . . , ol〉 ∈ [[Q]]S2

. ut

Proposition 5.5 implies that QuineCALC-k queries are k-counting-only. Next,
we extend this to SimpleCALC-k.

To do so, we use the following closure properties for counting-only SyCALC

queries under Boolean connectives and quantifiers. Remember that the counting-
only SyCALC queries are a semantic and not a syntactic fragment of the SyCALC

queries; hence, this result cannot be deduced straightforwardly from the fact that
SyCALC is by definition closed under Boolean connectives and quantifiers.

Proposition 5.6 Let k ≥ 0. k-SyCALC is closed under disjunction, negation, and

object quantification: if e1 and e2 are k-SyCALC queries, then e1 ∨ e2, ¬e1, and ∃x e1
are also k-SyCALC queries.

Proof Let S1 and S2 be k-counting-equivalent structures. We assume e1 and e2
are k-counting only, hence, we have [[e1]]S1

= [[e1]]S2
and [[e2]]S1

= [[e2]]S2
. Without

loss of generality, we can assume that e1 and e2 both have free object variables
x1, . . . , xm. We have the following three cases:

1. We have 〈o1, . . . , om〉 ∈ [[e1 ∨ e2]]S1
if and only if 〈o1, . . . , om〉 ∈ [[e1]]S1

or
〈o1, . . . , om〉 ∈ [[e2]]S1

. As e1 and e2 are k-counting only, we have 〈o1, . . . , om〉 ∈
[[ei]]S1

if and only if 〈o1, . . . , om〉 ∈ [[ei]]S2
, i ∈ {1, 2}. Hence, we conclude

〈o1, . . . , om〉 ∈ [[e1 ∨ e2]]S1
if and only if 〈o1, . . . , om〉 ∈ [[e1 ∨ e2]]S2

.
2. We have 〈o1, . . . , om〉 ∈ [[¬e1]]S1

if and only if 〈o1, . . . , om〉 /∈ [[e1]]S1
. As e1 is k-

counting only, we have 〈o1, . . . , om〉 /∈ [[e1]]S1
if and only if 〈o1, . . . , om〉 /∈ [[e1]]S2

.
Hence, we conclude 〈o1, . . . , om〉 ∈ [[¬e1]]S1

if and only if 〈o1, . . . , om〉 ∈ [[¬e1]]S2
.

3. Without loss of generality, we assume that x = xm. We have 〈o1, . . . , om−1〉 ∈
[[∃xm e1]]S1

if and only if there exists an om ∈ D such that 〈o1, . . . , om〉 ∈
[[e1]]S1

. As e1 is k-counting only, we have 〈o1, . . . , om〉 ∈ [[e1]]S1
if and only if

〈o1, . . . , om〉 ∈ [[e1]]S2
. Hence, we conclude 〈o1, . . . , om−1〉 ∈ [[∃xm e1]]S1

if and
only if 〈o1, . . . , om〉 ∈ [[∃xm e1]]S2

. ut

Proposition 5.2, Proposition 5.5, and Proposition 5.6 immediately yield

Corollary 5.7 Let k ≥ 0. All BasicGCount-k, GCount-k, QuineCALC-k, and Simple-

CALC-k queries are in k-SyCALC.

14 Jelle Hellings et al.

6 From SimpleCALC to GCount

In Section 3, we introduced GCount, a counting-only query language based on the
notion of generalized support. In Sections 4 and 5, we showed that GCount is en-
tirely first-order definable. Here, we show that every SimpleCALC query is express-
ible in GCount. Moreover, this result specializes to SimpleCALC-k and GCount-k,
k ≥ 0. We prove equivalence of SimpleCALC and GCount by proving equivalence
of QuineCALC and BasicGCount. First, we observe that the counting-only queries
in QuineCALC are only first-order. Hence, based on the structure of these queries,
there are clear limitations on the amount of counting such a query can do. Based
on this observation, we introduce partial-counting-equivalence, a weaker notion than
counting-equivalence, and show that partial-counting-equivalence better matches
the limited expressive power of QuineCALC (Lemma 6.3). Then, we use partial-
counting-equivalence to relate arbitrary structures to minimal structures that use
only a small set of set names and have a small set-membership relation (Propo-
sition 6.6). Then, we show that BasicGCount can encode the query outcome of a
given QuineCALC query on a given minimal structure (Lemma 6.6). Finally, we
bootstrap this result to arbitrary minimal structures and, by Proposition 6.6, to
arbitrary structures (Theorem 6.8).

Definition 6.1 Let k, d ≥ 0. Structures S1 = (N1, γ1) and S2 = (N2, γ2) are k,d-

partial-counting-equivalent if, for every pair of itemsets I and E with |I ∪ E| ≤ k,
either

1. [[gsupport(I;E)]]S1
= [[gsupport(I;E)]]S2

< d; or
2. d ≤ [[gsupport(I;E)]]S1

≤ |N1| − d and d ≤ [[gsupport(I;E)]]S2
≤ |N2| − d; or

3. |N1| − [[gsupport(I;E)]]S1
= |N2| − [[gsupport(I;E)]]S2

< d.

We claim that no query in QuineCALC[d]-k can distinguish k,d-partial-counting-
equivalent structures. Before we prove this, we first prove the following, more
general, result for SyCALC queries:

Lemma 6.2 Let k, d ≥ 0, let Q be a SyCALC query with quantifier depth d, and let S1

and S2 be k,d-partial-counting-equivalent structures with |adom(S1)| = |adom(S2)| ≤
k. Then [[Q]]S1

= [[Q]]S2
.

Proof We consider the Ehrenfeucht-Fräıssé game on structures S1 and S2 in which
the spoiler can play up to d set names and any number of objects. When the
Spoiler plays an object, the Duplicator responds with the same object in the other
structure. When the Spoiler plays a set name n not yet played in Si, i ∈ {1, 2},
the Duplicator responds with a set name t not yet played in the other structure,
S3−i, such that objects(n; S1) = objects(t; S3−i). Due to the structures being k,d-
partial-counting-equivalent and |adom(S1)| = |adom(S2)| ≤ k, such a set name
t always exist. As a consequence, the Duplicator always has a winning strategy.
Hence, no SyCALC query with quantifier depth d can distinguish between S1 and
S2. It follows that [[Q]]S1

= [[Q]]S2
. ut

Next, we specialize the above for QuineCALC queries:

Lemma 6.3 Let k, d ≥ 0, let Q be a QuineCALC[d]-k query, and let S1 and S2 be

k,d-partial-counting-equivalent. Then [[Q]]S1
= [[Q]]S2

.

First-order definable counting-only queries 15

Proof Let Q be a query with free object variables x1, . . . , xl, l ≤ k. Let o1, . . . , ol ∈ D
be l objects, not necessarily distinct. By Lemma 5.3, 〈o1, . . . , ol〉 ∈ [[Q]]S1

if and only
if 〈o1, . . . , ol〉 ∈ [[Q]]S1|{o1,...,ol}

and 〈o1, . . . , ol〉 ∈ [[Q]]S2
if and only if 〈o1, . . . , ol〉 ∈

[[Q]]S2|{o1,...,ol}
. Hence, we only need to show 〈o1, . . . , ol〉 ∈ [[Q]]S1|{o1,...,ol}

if and only

if 〈o1, . . . , ol〉 ∈ [[Q]]S2|{o1,...,ol}
, which follows from Lemma 6.2. ut

Combining Proposition 5.2 and Lemma 6.3 yields

Corollary 6.4 Let k, d ≥ 0, let e be a BasicGCount[d]-k formula, and let S1 and S2

be k,d-partial-counting-equivalent. Then [[e]]S1
= [[e]]S2

.

We remind the reader that k-counting-equivalent structures have the same
number of set names. Since k,d-partial-counting-equivalence is a weaker notion,
we can use it to relate structures that do not have the same number of set names.

Definition 6.5 Let k, d ≥ 0 and let A ⊂ D with |A| ≤ k. A structure S = (N, γ)
with adom(S) = A is k,d-minimal if, for every I ⊆ A, [[gsupport(I;A− I)]]S′ ≤ d.

We have the following:

Proposition 6.6 Let k, d ≥ 0 and let S be a structure with A = adom(S) and |A| = k.

There exists a k,d-minimal structure S′ with adom(S′) = A such that S and S′ are

k,d-partial-counting-equivalent.

Proof Let S = (N, γ). We construct S′ = (N′, γ′) by encoding

c = min(d, [[gsupport(I;A− I)]]S)

copies of each itemset I ⊆ A, this by introducing c set names for itemset I and
relating each of these set names only to the objects in I. By construction, we
have [[gsupport(I;A− I)]]S′ ≤ d. It remains to prove that S and S′ are k,d-partial-
counting-equivalent.

From the construction used, it follows that, for every itemset I ⊆ A with
[[gsupport(I;A − I)]]S < d, we have [[gsupport(I;A − I)]]S = [[gsupport(I;A − I)]]S′ .
Hence, these itemsets I satisfy Definition 6.1.1. Next, we consider itemsets I ⊆ A
with [[gsupport(I;A− I)]]S ≥ d. We distinguish the following two cases:

1. Exactly one itemset I ⊆ A with [[gsupport(I;A− I)]]S ≥ d exists. By construc-
tion, we must have |N|−[[gsupport(I;A−I)]]S = |N′|−[[gsupport(I;A−I)]]S′ . Let
c = |N|− [[gsupport(I;A−I)]]S. If c ≥ d, then itemset I satisfies Definition 6.1.2.
Else, if c < d, then itemset I satisfies Definition 6.1.3.

2. Several itemsets I with [[gsupport(I;A − I)]]S ≥ d exist. In this case, |N| ≥ 2d
and, by construction, also |N′| ≥ 2d. Hence, we must have d ≤ [[gsupport(I;A−
I)]]S ≤ |N|−d and d ≤ [[gsupport(I;A− I)]]S′ ≤ |N′|−d. We conclude that these
itemsets I satisfy Definition 6.1.2. ut

The outcome of QuineCALC[d]-k queries on given k,d-minimal structures can
easily be encoded by BasicGCount[d]-k formulae, which we show next.

Lemma 6.7 Let k, d ≥ 0, let Q be a QuineCALC[d]-k with k free object variables, and

let S be a k,d-minimal structure. There exists a formula e in BasicGCount[d]-k such

that [[e]]S = [[Q]]S and, for all structures S′, [[e]]S′ ⊆ [[Q]]S′ .

16 Jelle Hellings et al.

Proof Let x1, . . . , xk be the free object variables in Q. Choose a mapping t :
{x1, . . . , xk} → adom(S). Let X ⊆ {x1, . . . , xk}, let D = {t(x1), . . . , t(xk)}, let
IX = {t(x) | x ∈ X}, and let cX = [[gsupport(IX;D− IX)]]S. Finally, let

ϕt =
∧

1≤i<j≤k xi ≈i,j xj ;

ψt =
∧

X⊆{x1,...,xk} gcount(X; {x1, . . . , xk} − X) ∼X cX,

in which “≈i,j” is “=” if t(xi) = t(xj) and is “ 6=” otherwise, and “∼X” is “=” if
cX < d and “≥” otherwise. We define et ≡ false if 〈t(x1), . . . , t(xk)〉 /∈ [[Q]]S and we
define et ≡ ϕt ∧ψt otherwise. By construction, we have 〈t(x1), . . . , t(xk)〉 ∈ [[et]]S if
and only if 〈t(x1), . . . , t(xk)〉 ∈ [[Q]]S.

Next, we show that 〈v1, . . . , vk〉 ∈ [[et]]S′ implies 〈v1, . . . , vk〉 ∈ [[Q]]S′ . Assume we
have 〈v1, . . . , vk〉 ∈ [[et]]S′ . By Lemma 5.3 and Proposition 5.2, we have 〈v1, . . . , vk〉 ∈
[[et]]S′|{v1,...,vk}

. The subformula ϕt enforces that, for all 1 ≤ i ≤ j ≤ k, vi = vj if

and only if t(xi) = t(xj). Hence, |{v1, . . . , vk}| = |D|. Let b = {vi 7→ t(xi) | 1 ≤
i ≤ k} be a bijection from {v1, . . . , vk} to D, and let b(S′|{v1,...,vk}) be the struc-

ture obtained from S′|{v1,...,vk} by replacing each v ∈ adom(S′|{v1,...,vk}) by b(v).
By construction, we have 〈t(x1), . . . , t(xk)〉 ∈ [[et]]b(S′|{v1,...,vk})

. Due to the condi-

tions enforced by et, b(S
′|{v1,...,vk}) and S|D are k,d-partial-counting-equivalent.

Hence, by Corollary 6.4, 〈t(x1), . . . , t(xk)〉 ∈ [[et]]S|D . By Lemma 5.3, we have
〈t(x1), . . . , t(xk)〉 ∈ [[et]]S, which implies 〈t(x1), . . . , t(xk)〉 ∈ [[Q]]S. By Lemma 5.3
and Lemma 6.3, we have 〈t(x1), . . . , t(xk)〉 ∈ [[Q]]b(S′|{v1,...,vk})

. By construction of

b(S′|{v1,...,vk}), we have 〈v1, . . . , vk〉 ∈ [[Q]]S′|{v1,...,vk}
. Finally, by Lemma 5.3, we

conclude 〈v1, . . . , vk〉 ∈ [[Q]]S′ .
To conclude the proof, we construct

e =
∨

mappings t : {x1, . . . , xk} → adom(S) et.

It follows immediately that [[e]]S = [[Q]]S and, for all structures S′, [[e]]S′ ⊆ [[Q]]S′ . ut

Finally, we generalize Lemma 6.7 to arbitrary structures.

Theorem 6.8 Let k, d ≥ 0 and let Q be a QuineCALC[d]-k query. There exists a for-

mula e in BasicGCount[d]-k such that, for all structures S′, [[Q]]S′ = [[e]]S′ .

Proof For k = 0, we refer to Proposition 7.2. Thus assume k > 0. Without loss of
generality, we may assume that Q is not in QuineCALC[d]-(k-1) and, hence, has k
free object variables. Let A = {o1, . . . , ok} ⊂ D be a set of k distinct objects. Let
X(A) be the set of k,d-minimal structures one can construct using only objects in
A. We observe that X(A) is finite (up to isomorphisms). Let

e =
∨

S∈X(A) eS,

in which eS is the BasicGCount[d]-k formula for query Q and structure S obtained
from Lemma 6.7. Next, we prove that, for all structures S′, [[Q]]S′ = [[e]]S′ . Let
S′ be a structure. By Lemma 5.3, 〈v1, . . . , vk〉 ∈ [[Q]]S′ if and only if 〈v1, . . . , vk〉 ∈
[[Q]]S′|{v1,...,vk}

. By Proposition 6.6, there exists a k,d-minimal structure S′k,d that

is k,d-counting-equivalent to S′|{v1,...,vk}. Hence, by Lemma 6.3, 〈v1, . . . , vk〉 ∈
[[Q]]S′|{v1,...,vk}

if and only if 〈v1, . . . , vk〉 ∈ [[Q]]S′
k,d

. Let SA ∈ X(A) be a k,d-

minimal structure over A that is isomorphic to S′k,d and chose a bijection b :

First-order definable counting-only queries 17

adom(S′k,d)→ adom(SA) showing that SA and S′k,d are isomorphic. By construc-
tion, 〈v1, . . . , vk〉 ∈ [[Q]]S′

k,d
if and only if 〈b(v1), . . . , b(vk)〉 ∈ [[Q]]SA . By Lemma 6.7,

〈b(v1), . . . , b(vk)〉 ∈ [[Q]]SA if and only if 〈b(v1), . . . , b(vk)〉 ∈ [[e]]SA . By construc-
tion, 〈b(v1), . . . , b(vk)〉 ∈ [[e]]SA if and only if 〈v1, . . . , vk〉 ∈ [[e]]S′

k,d
. By Proposi-

tion 6.6, 〈v1, . . . , vk〉 ∈ [[e]]S′
k,d

if and only if 〈v1, . . . , vk〉 ∈ [[e]]S′|{v1,...,vk}
. Finally, by

Lemma 5.3, 〈v1, . . . , vk〉 ∈ [[e]]S′|{v1,...,vk}
if and only if 〈v1, . . . , vk〉 ∈ [[e]]S′ , and we

conclude [[Q]]S′ = [[e]]S′ . ut

As a direct consequence of Proposition 5.2 and Theorem 6.8, we have

Corollary 6.9

1. The class BasicGCount[d]-k is equivalent to the class QuineCALC[d]-k.

2. The class GCount-k is equivalent to the class SimpleCALC-k.

7 Counting-only hierarchies

We now present four hierarchies of counting-only queries, for k ≥ 0: k-counting-only
queries, k-SyCALC, QuineCALC-k (or, equivalently, BasicGCount-k), and SimpleCALC-
k (or, equivalently, GCount-k). We show that all four hierarchies are non-collapsing:

Theorem 7.1 Let k ≥ 0.

1. Every k-counting-only query is also (k+1)-counting-only.

2. There is a QuineCALC-(k+1) query which is not k-counting-only.

3. There is a Boolean SimpleCALC-(k+1) query which is not k-counting-only.

Proof Statement 1 follows immediately from the definition. For Statements 2 and 3,
let S1,A and S2,A be the structures of Proposition 4.3 with |A| = k+1. These struc-
tures are k-counting-equivalent, but not (k+1)-counting-equivalent. For State-
ment 2, we consider

Q = ∃X
(∧

1≤i≤k+1 Γ (xi, X)
)
,

which is a (k+1)-counting-only QuineCALC-(k+1) query by Corollary 5.7. Let t be
a (k+1)-tuple containing each value of A once. Then, t ∈ [[Q]]S1

, but t /∈ [[Q]]S2
.

Hence, Q is not k-counting-only. For Statement 3, we construct from Q the Boolean
SimpleCALC-(k+1) query

Q
′ = ∃x1 . . . xk+1

((∧
1≤j<j′≤k+1 (xj 6= xj′)

)
∧ Q(x1, . . . , xk+1)

)
.

Then, [[Q′]]S1
= true and [[Q′]]S2

= false. Hence, Q′ is not k-counting-only. ut

Statement 3 of Theorem 7.1 can be interpreted as the Boolean version of State-
ment 2. Since QuineCALC-k and SimpleCALC-k queries are also k-SyCALC queries
as well as k-counting-only queries, Theorem 7.1 extends to all four hierarchies.

We now proceed by comparing the fragments mutually. The 0-counting-only
fragments have straightforward relationships:

Proposition 7.2 The languages 0-SyCALC, SimpleCALC-0, and QuineCALC-0 all ex-

press exactly the same set of queries.

18 Jelle Hellings et al.

Proof (sketch) A 0-counting-only query can only distinguish structures based on
the number of set names, independent of the presence or absence of any objects.
Distinguishing structures based on the number of set names can already be done
using BasicGCount-0. ut

We have already argued that the 1-counting-only query Q2 is not first-order
definable [18]. Also the 0-counting-only query

Q9 = {〈〉 | count() is even}

is not first-order definable. Consequently, we have:

Proposition 7.3 There is a Boolean 0-counting-only query not expressible in SyCALC.

By Proposition 7.3 and Statement 1 of Theorem 7.1, Q9 also witnesses that, for
all k, k ≥ 0, there is a Boolean k-counting-only query not expressible in k-SyCALC.

Since QuineCALC queries do not allow object quantification, all Boolean Quine-

CALC queries are in QuineCALC-0. Hence, no Boolean query that is k-counting-only,
k ≥ 1, but not (k-1)-counting-only is expressible in QuineCALC-k. Hence, it only
remains to establish a separation between k-SyCALC and SimpleCALC-k.

We first deal with the special case k = 1.

Proposition 7.4 There is a Boolean 1-SyCALC query not expressible in SimpleCALC-

1.

Proof The Boolean 1-SyCALC query

Q10 = {〈〉 | ∃x∃y ((x 6= y) ∧ ∃X∃Y (Γ (x,X) ∧ Γ (y, Y)))},

which queries for structures with an active domain of at least two objects, is 1-
counting-only but not expressible in SimpleCALC-1, as SimpleCALC-1 is syntactically
unable to relate object variables. ut

To establish the separation between k-SyCALC and SimpleCALC-k, k ≥ 2, we
exhibit a 2-SyCALC query, which is not 1-counting-only, that is not expressible in
SimpleCALC. Thereto, let

set-ids = ∀X∃x (Γ (x,X) ∧ ¬∃Y ((X 6= Y) ∧ Γ (x, Y)))

be the Boolean query specifying that each set in a bag of sets has a distinct
identifying object. We first prove that set-ids is in 2-SyCALC, but not in 1-Sy-
CALC, despite it using only a single object variable.

Proposition 7.5 Query set-ids is 2-counting-only, but not 1-counting-only.

Proof Let o1, o2 ∈ D and n1,n2 ∈ N . Let S1 = ({n1,n2}, {(o1,n1), (o2,n2)})
and S2 = ({n1,n2}, {(o1,n1), (o2,n1)}). Since S1 and S2 are 1-counting-equiva-
lent, while [[set-ids]]S1

= true and [[set-ids]]S2
= false, set-ids is not 1-count-

ing-only. Next, to prove that set-ids is 2-counting-only, consider any structure
S = (N, γ) with |N| = n. We have [[set-ids]]S = true if and only if there exist
o1, . . . , on ∈ adom(S) such that, for all i, 1 ≤ i ≤ n, [[support(oi)]]S = 1 and, for all
i, j, 1 ≤ i < j ≤ n, [[support(oi, oj)]]S = 0. By Proposition 3.3, set-ids is 2-count-
ing-only. ut

First-order definable counting-only queries 19

Observe that set-ids can only evaluate to true on a structure if the size of
its active domain is lower-bounded by the number of set names in the structure.
Consequently, by Lemma 5.3, we can already rule out that set-ids is expressible in
QuineCALC. To prove that set-ids is not expressible in SimpleCALC, we generalize
Lemma 5.3 to SimpleCALC. The actual result in presented in Proposition 7.8 and
proved using Lemma 7.7. In order to state Lemma 7.7, we need the following
notion of object quantification:

Definition 7.6 Let e be a SimpleCALC query. We denote the object variable count

of e by vars(e), which we define as

vars(e) =


k if e is a QuineCALC-k query;

vars(e′) if e ≡ ¬e′ or e ≡ ∃x e′;
vars(e1) + vars(e2) if e ≡ e1 ∨ e2.

Lemma 7.7 Let e be a SimpleCALC query with k free object variables, S = (N, γ) a

structure, and νD a mapping from free object variables in e to an itemset I ⊂ D with

|I| ≤ k. There exists an itemset V with I ⊆ V and |V| ≤ vars(e) such that, for every

itemset W, V ⊆W ⊆ D, we have (S, νD, ∅) � e if and only if (S|W, νD, ∅) � e.

Proof The proof is by induction on the structure of SimpleCALC queries. The base
cases are QuineCALC queries ϕ with k free object variables, for which we choose
V = I. By Lemma 5.3, the statement of this lemma holds for e.

Assume that, for every query ϕ of size at most i, the statement of this lemma
holds. Let e be a query of size i+ 1. We distinguish the following inductive cases:

1. e ≡ e1∨e2. We have (S, νD, νN) � e if and only if (S, νD, νN) � e1 or (S, νD, νN) �
e2. We apply the induction hypothesis on e1 and e2 to obtain itemsets V1 and
V2, respectively, that satisfy the statement of this lemma. Let V = V1 ∪ V2.
Observe that |V| ≤ |V1|+ |V2| ≤ vars(e1) + vars(e2) = vars(e). As V1,V2 ⊆ V,
we conclude that, for every itemset W, V ⊆ W ⊆ D, (S, νD, νN) � e1 if and
only if (S|W, νD, νN) � e1, (S, νD, νN) � e2 if and only if (S|W, νD, νN) � e2,
and, by the semantics of ∨, (S, νD, νN) � e if and only if (S|W, νD, νN) � e.

2. e ≡ ¬e′. We have (S, νD, νN) � e if and only if not (S, νD, νN) � e′. We apply the
induction hypothesis on e′ to obtain itemset V′ that satisfies the statement of
this lemma. Let V = V′. Observe that |V| = |V′| ≤ vars(e′) = vars(e). As V′ ⊆
V, we conclude that, for every set of objects W, V ⊆W ⊆ D, (S, νD, νN) � e′

if and only if (S|W, νD, νN) � e′ and, by the semantics of ¬, (S, νD, νN) � e if
and only if (S|W, νD, νN) � e.

3. e ≡ ∃x e′. We have (S, νD, νN) � e if and only if there exists an object o ∈ D
such that (S, νD[x 7→ o], νN) � e′. We apply the induction hypothesis on e′

to obtain itemset V′ that satisfies the statement of this lemma. Let V = V′.
Observe that |V| = |V′| ≤ vars(e′) = vars(e) and o ∈ V. As V′ ⊆ V, we conclude
that, for every set of objects W, V ⊆ W ⊂ D, (S, νD[x 7→ o], νN) � e′ if and
only if (S|W, νD[x 7→ o], νN) � e′ and, by the semantics of ∃x, (S, νD, νN) � e if
and only if (S|W, νD, νN) � e. ut

We can now prove that set-ids is not expressible in SimpleCALC:

Proposition 7.8 The query set-ids is not expressible in SimpleCALC.

20 Jelle Hellings et al.

Proof Assume there exists a (Boolean) SimpleCALC query e such that, for every
structure S, [[e]]S = [[set-ids]]S. Let n = vars(e)+1, {o0, . . . , on+1} an itemset, and
N = {n0, . . . ,nn+1} ⊂ N . Let Sn+1 = (N, {(oi,ni) | 0 ≤ i ≤ n + 1}). We observe
that all objects have the same behavior. Hence, with respect to Lemma 7.7 any
itemset W with |W| = vars(e) must suffice. Let W = {o1, . . . , on} and let Sn =
Sn+1|W. By construction, [[e]]Sn+1

6= ∅ and [[e]]Sn
= ∅. By Lemma 7.7, however,

[[e]]Sn+1
= ∅ if and only if [[e]]Sn

= ∅, a contradiction. We conclude that set-ids is
not expressible in SimpleCALC. ut

Corollary 7.9 There is a Boolean 2-SyCALC query not expressible in SimpleCALC.

8 Dichotomy for satisfiability-related decision problems

We study the decidability of satisfiability, validity, query containment, and query
equivalence for the query languages we introduced. Using Proposition 5.6, we can
derive the following:

Lemma 8.1 Let L be k-SyCALC, SimpleCALC-k, or GCount-k, and let p1 and p2 be

two decision problems chosen from satisfiability, validity, query containment, and query

equivalence. Then p1 is decidable for L if and only if p2 is decidable for L.

Because of Lemma 8.1, we only study the satisfiability problem in more detail.

8.1 Satisfiability of SimpleCALC and GCount is decidable

We first observe that SimpleCALC, or, equivalently, GCount, has the finite model

property: a query is satisfiable if and only if it is satisfiable in a structure of which
the size (in terms of the number of set names and active domain objects) is uni-
formly bounded in terms of the size of the query. Indeed, Lemma 7.7 gives an
upper-bound on the required number of active domain objects. Moreover, if the
size of the active domain is upper-bounded, Proposition 6.6 can be used to also
upper-bound the number of set names. From this finite model property, it follows
immediately that satisfiability is decidable for SimpleCALC and GCount.

Upon closer inspection, Lemma 7.7 and Proposition 6.6 guarantee that the size
of this finite model is uniformly upper-bounded by an exponential function of the
query size, allowing us to state a stronger result:

Lemma 8.2 Satisfiability is in NEXPTIME for SimpleCALC and GCount.

Proof It suffices to consider SimpleCALC. So, let e be a SimpleCALC query with
size |e|. Observe that both vars(e) and the set name quantifier depth of e are
upper-bounded by |e|. We answer satisfiability by trying to find a structure S =
(N, γ) such that [[e]]S 6= ∅. From Lemma 7.7, we derive that |adom(S)| ≤ |e|. From
Proposition 6.6, we derive that |N| ≤ |e|·2|e|. Hence, |γ| ≤ |e|2 ·2|e| ≤ 22|e|. We solve
satisfiability of SimpleCALC by non-deterministically choosing structure S and then
verifying whether [[e]]S 6= ∅. The verification step can be done via standard first-
order query evaluation, for which the cost is upper-bounded by O(|e| · |S||e|) [18,
Proposition 6.6], in which |S| is the size of the structure. As |S| = O(22|e|), the cost

of the verification step is upper-bounded by O(2|e|
2+|e|), completing the proof. ut

First-order definable counting-only queries 21

Using a reduction involving monadic first-order logic (over structures with
only unary relations), for which satisfiability is NEXPTIME-complete [3,17], we
can also prove that this is also a lower-bound on the complexity of the satisfiability
problem:

Lemma 8.3 Satisfiability is NEXPTIME-hard for SimpleCALC-2 and GCount-2.

Proof We only need to show that satisfiability is NEXPTIME-hard for GCount-2.
Thereto, let S = (M;X1, . . . , Xn) be a first-order structure over domain M with
unary predicates X1, . . . , Xn and ϕ a first-order logic formula over S without free
variables. We encode the first-order structure S into a bag-of-sets structure. To
do so, we represent the unary predicates X1, . . . , Xn by set names n1, . . . ,nn. To
avoid set name quantification, we associate to each set name ni a unique identifying
object oi, 1 ≤ i ≤ n. We represent the domain elements of M by objects distinct
from o1, . . . , on, and represent predicate membership tests of the form Xj(y) by
count(y, oj) = 1 terms. In summary, we encode S by a structure S = (N, γ) with
N = {n1, . . . ,nn} and γ = {(o1,n1), . . . , (on,nn)} ∪ {(m,ni) | m ∈ M∧Xi(m)}, in
which m is the object representing m. We now translate ϕ to the query Q given by

Qϕ ≡ (count() = n) ∧ ∃y1 . . .∃yn
(
τ(ϕ) ∧

(∧
1≤i≤n

count(yi) = 1
)
∧

(∧
1≤i<j≤n

count(yi, yj) = 0
))
,

in which τ(ϕ) is the translation of ϕ obtained by replacing all subformulae ∃y ϕ′ by
∃y (

∧
1≤i≤n(y 6= yi) ∧ τ(ϕ′(y)) and all terms of the form Xi(b) by count(b, yi) = 1.

We remind the reader that gcount(·)-terms can also express count(·)-terms in a
straightforward manner. By construction, this query is a GCount-2 query. It follows
straightforwardly that e is satisfiable if and only if the monadic first-order logic
formula ϕ is satisfiable. ut

Combinining Lemmas 8.2 and 8.3 immediately yields the following:

Theorem 8.4 For k ≥ 2, satisfiability is NEXPTIME-complete for SimpleCALC-k

and GCount-k.

8.2 Satisfiability of 1-SyCALC is decidable

By Proposition 7.2, the decidability of the satisfiability problem for 0-SyCALC fol-
lows from the decidability of the satisfiability problem for SimpleCALC-0. This does
not extend to 1-SyCALC, unfortunately, but we can still prove that the satisfiability
problem for 1-SyCALC is decidable. Again, we show that the finite model property
holds. First, we put an upper-bound on the number of set names.

Proposition 8.5 Let d ≥ 0, and let S = (N, γ) be a structure. There exists a structure

S′ = (N′, γ′) with |N′| ≤ 2d such that S and S′ are 1,d-partial-counting-equivalent

structures.

22 Jelle Hellings et al.

Proof If |N| ≤ 2d, we put S′ = S, and Proposition 8.5 trivially holds. Otherwise,
let N′ = {n1, . . . ,n2d} and

γ′ = {(o,ni) | ([[support(o)]]S < d) ∧ (1 ≤ i ≤ [[support(o)]]S)} ∪
{(o,ni) | (d ≤ ([[support(o)]]S) ≤ |N| − d) ∧ (1 ≤ i ≤ d)} ∪
{(o,ni) | (|N| − d < [[support(o)]]S) ∧ (1 ≤ i < (2d− (|N| − [[support(o)]]S))}.

Using that, for o ∈ D and S′′ = (N′′, γ′′) any structure, [[gsupport(o; ∅)]]S′′ =
[[support(o)]]S′′ and [[gsupport(∅; o)]]S′′ = |N′′|− [[support(o)]]S′′ , it follows straight-
forwardly that S and S′ are 1,d-partial-counting-equivalent structures. ut

Next, we put an upper bound on the number of objects.

Proposition 8.6 Let Q be a 1-SyCALC query with set name quantifier depth d and

object quantifier depth r, and let S = (N, γ) be a structure. Then, [[Q]]S 6= ∅ if and

only if there exists a structure S′ = (N′, γ′) with |N′| ≤ 2d, |adom(S′)| ≤ 2rd, and

[[Q]]S′ 6= ∅.

Proof By Proposition 8.5, we may assume without loss of generality that |N| ≤ 2d.
Let N′ = {n1, . . . ,n|N|} and Ii = {o | [[support(o)]]S = i}, 1 ≤ i ≤ |N|. Since S and

S′′ = (N′, γ′′) where γ′′ = {(o,nj) | (1 ≤ j ≤ i ≤ |N|) ∧ (o ∈ Ii)} are 1-counting-
equivalent, [[Q]]S′′ = [[Q]]S. Choose Pi ⊆ Ii such that |Pi| = min(|Ii|, r), 1 ≤ i ≤ |N|,
and let S′ = (N′, γ′) where γ′ = {(o,nj) | (1 ≤ j ≤ i ≤ |N|) ∧ (o ∈ Pi)}.

To show that Q cannot distinguish between structures S′ and S′′, we consider
the Ehrenfeucht-Fräıssé game in which the spoiler can play up to r objects and
we allow the Spoiler to play an arbitrary amount of set names. When the Spoiler
plays a set name, the Duplicator simply responds with the same set name (in
the other structure). When the Spoiler plays an object o not yet played in one of
the structures, the Duplicator responds with an object o′ not yet played in the
other structure such that the objects o and o′ have the same count. The above
construction of γ′ out of γ′′ preserves the behavior of objects with the same count
and keeps r objects per count. Hence, such an object o′ always exists. We conclude
that the Duplicator always has a winning strategy. Hence, no SyCALC query with
set name quantifier depth d and object quantifier depth r can distinguish between
S′ and S′′. Hence, we have [[Q]]S′ 6= ∅ if and only if [[Q]]S′′ 6= ∅. As Q is in 1-Sy-
CALC and S and S′′ are 1-counting-equivalent, we conclude [[Q]]S′ 6= ∅ if and only
if [[Q]]S 6= ∅. ut

Propositions 8.5 and 8.6 combined prove that 1-SyCALC has the finite model
property and that the size of these finite models is uniformly upper-bounded by a
polynomial function of the query size. Hence,

Proposition 8.7 The satisfiability problem is decidable for 1-SyCALC queries.

From Proposition 8.6, we can straightforwardly deduce an algorithm that de-
cides whether a given 1-SyCALC query is satisfiable, which would give us an upper-
bound to the complexity of this problem:

Proposition 8.8 The satisfiability problem is in EXPTIME for 1-SyCALC queries.

First-order definable counting-only queries 23

Proof Observe that SimpleCALC-1 and GCount-1 queries are 1-SyCALC queries.
Hence, we only need to show that satisfiability for 1-SyCALC queries is in EX-
PTIME. Let e be a 1-SyCALC query with size |e|. Observe that both the set name
quantifier depth and the object quantifier depth are upper-bounded by |e|. We
answer satisfiability by trying to find a structure S = (N, γ) such that [[e]]S 6= ∅.
Due to Proposition 8.6, we have |N| ≤ 2|e|, |adom(S)| ≤ 2|e|2, and |γ| ≤ 4|e|3.
Hence, the size of S is upper-bounded by |S| = O(|e|3). These structures have
polynomial size and can be effectively enumerated. To check whether any of these
structures S satisfies [[e]]S = ∅, we resort to first-order query evaluation, which is
in PSPACE [18, Theorem 6.16], completing our proof.

8.3 Satisfiability of 2-SyCALC is undecidable

To prove undecidability of satisfiability for 2-SyCALC, we reduce satisfiability of
standard first-order logic queries on undirected unlabeled graphs without self-
loops, a well-known undecidable problem,7 to satisfiability of the strict fragment
of 2-SyCALC that does not allow object comparisons (of the form x = y).

An undirected unlabeled graph without self-loops, or graph, for short, is a pair
G = (V,E) in which V is a set of nodes and E ⊆ V ×V is an antireflexive and
symmetric edge relation. On such graphs we consider standard first-order logic
formulae of the form

e := x1 = x2 | E(x1, x2) | e ∨ e | ¬e | ∃x e,

in which x1, x2, and x are node variables. We write [[e]]G to denote the evaluation
of e on G.

We define the encoding of G = (V,E) as the structure enc(G) = (N, γ) where
N = V and γ = {({x1, x2}, x1), ({x1, x2}, x2) | (x1, x2) ∈ E} ∪ {({x}, x) | x ∈ V}.
The active domain consists of node-pair sets, representing the edges of G, and
singleton node sets, serving as distinctive identifying objects. Each node pair set
has a support of 2, identifying the end-points of the edge represented. The structure
enc(G) always satisfies the following Boolean SyCALC query:

enc-graph = set-ids ∧ (∀x count(x) ≤ 2).

If ν converts node variables in a first-order logic formula on graphs ϕ to set
name variables, then the corresponding translation τ(ϕ)ν into a SyCALC query is
defined as follows:

τ(x1 = x2)ν ≡ ν(x1) = ν(x2);

τ(E(x1, x2))ν ≡ (ν(x1) 6= ν(x2)) ∧ ∃x (Γ (x, ν(x1)) ∧ Γ (x, ν(x2)));

τ(e1 ∨ e2)ν ≡ τ(e1)ν ∨ τ(e2)ν ;

τ(¬e)ν ≡ ¬τ(e)ν ;

τ(∃x e)ν ≡ ∃X τ(e)ν[x7→X],

with X a fresh set name variable. We define the encoding of a Boolean first-order
logic formula on graphs ϕ in SyCALC as enc(ϕ) = enc-graph ∧ τ(ϕ)∅. Obviously,

7 We have no direct reference, but if we use a straightforward encoding from binary relations
to undirected unlabeled graphs without self-loops, we can rely on Trakhtenbrot’s Theorem [18,
Theorem 9.2].

24 Jelle Hellings et al.

Lemma 8.9 Let G be a graph and let ϕ be a Boolean first-order logic formula on

graphs. Then, [[ϕ]]G = [[enc(ϕ)]]enc(G).

Next, we prove that, for any first-order Boolean logic formula ϕ on graphs,
enc(ϕ) is a Boolean 2-SyCALC query. We do so by proving that 2-counting-equiva-
lent structures satisfying the Boolean 2-SyCALC query set-ids must be isomorphic.

Lemma 8.10 Let S1 and S2 be 2-counting-equivalent structures. If [[set-ids]]S1
=

true, then S1 and S2 are isomorphic.

Proof Let S1 = (N1, γ1), S2 = (N2, γ2), and N1 = {n1, . . . ,nk}. As S1 and S2 are 2-
counting-equivalent, we have |N1| = |N2| and k = |N2|. Since [[set-ids]]S1

= true,
there exists distinct objects o1, . . . , ok with, for all 1 ≤ i ≤ k, (oi,ni) ∈ γi and
[[support(oi)]]S1

= [[support(oi)]]S2
= 1. Let b : N → N be the bijection b =

{ni 7→ n | (1 ≤ i ≤ k) ∧ ((oi,n) ∈ γ2)}. Next, we show that objects(ni; S1) =
objects(b(ni); S2), 1 ≤ i ≤ k, showing that the structures S1 and S2 are isomor-
phic. Let o ∈ D be an object with o ∈ objects(ni; S1). We have o ∈ objects(ni; S1)
if and only if [[support(o, oi)]]S1

= 1. Due to 2-counting-equivalence, we have
[[support(o, oi)]]S1

= [[support(o, oi)]]S2
= 1. Finally, by construction of b, we have

[[support(o, oi)]]S2
= 1 if and only if o ∈ objects(b(ni); S2). We conclude o ∈

objects(ni; S1) if and only if o ∈ objects(b(ni); S2). ut

Now, we can conclude directly

Corollary 8.11 If ϕ is a Boolean first-order logic formula on graphs, then enc(ϕ) is

a 2-SyCALC query.

Now, let S be a structure for which [[enc(ϕ)]]S 6= ∅, with ϕ a Boolean first-order
logic formula. For the last step in our reduction, we must find a graph GS such
that [[ϕ]]GS

6= ∅. Ideally, we would like that, up to isomorphism, enc(GS) = S,
but that can unfortunately not be guaranteed: a pair of sets might share several
objects (which would indicate multiple edges between the nodes represented by
these sets). Fortunately, given [[enc(ϕ)]]S 6= ∅, we can always derive from S a graph
G and the corresponding structure enc(G) for which [[ϕ]]G 6= ∅. We detail how
next.

Definition 8.12 Let S = (N, γ) be a structure such that [[enc-graph]]S = true. We
say that S is a graph encoding if

1. for every set name n ∈ N, there exists exactly one object o ∈ D such that
(o,n) ∈ γ and [[support(o)]]S = 1;

2. for every pair of distinct set names n1,n2 ∈ N, there exists at most one object
o ∈ D such that (o,n1), (o,n2) ∈ γ.

Proposition 8.13 Let S be a structure such that [[enc-graph]]S = true.

1. If S is a graph encoding, then there exists a graph G such that enc(G) and S are

isomorphic.

2. If S is not a graph encoding, then there exists a graph encoding S′ such that, for

every first-order query ϕ, [[enc(ϕ)]]S = [[enc(ϕ)]]S′ .

First-order definable counting-only queries 25

Proof Let S = (N, γ) be a structure such that [[enc-graph]]S = true. For State-
ment 1, we construct the graph G = (V,E) with V = N and

E = {(n1,n2) | (n1 6= n2) ∧ (∃o ((o,n1) ∈ γ) ∧ ((o,n2) ∈ γ))}.

We observe that S and enc(G) have the same set names. Let f : adom(S) →
adom(enc(G)) be the bijection

f = {o 7→ o′ | cover(o; S) = cover(o′; enc(G))},

which is uniquely defined. It is straightforward to see that f shows that S and
enc(G) are isomorphic.

For Statement 2, we assume that the structure S is not a graph encoding. In this
case, there must exist distinct objects p, q ∈ D such that p 6= q and cover(p; S) =
cover(q; S). As the query enc(ϕ) does not use object comparisons, the objects p

and q cannot be distinguished by enc(ϕ). Hence, we can reduce structure S to a
structure S′′ by removing either p or q, and still have [[enc(ϕ)]]S = [[enc(ϕ)]]S′′ . We
repeatedly use this step to reduce S to a graph encoding S′. ut

We combine Lemma 8.9, Corollary 8.11, and Proposition 8.13 to conclude:

Lemma 8.14 Let ϕ be a Boolean first-order logic formula on graphs. If there exists a

structure S satisfying enc(ϕ), then we can construct from S a graph satisfying ϕ.

Using Lemmas 8.9 and 8.14, we conclude the following:

Theorem 8.15 The satisfiability problem is undecidable for 2-SyCALC queries.

9 Connections with related approaches

Before concluding, we want to reflect on the choices we made with regard to the
data model used in the present paper.

As we pointed out in the Introduction, the type of data that are at the basis of
this study can be represented in different ways: as a bipartite graph, a bag of sets,
or a two-sorted binary relation linking set names to set elements. We chose the
last representation, because it is the closest to the relational model. This allows
us to use the many tools developed for the latter to the fullest in our model.

The representation we chose also begs the question how our model is related
with the nested relational model [25], in which set names can be linked directly
with the associated set of objects. Since our model corresponds to only a very spe-
cial case of the nested relational model, one may wonder why we did not consider
to represent more general forms of nesting into our model. The reason for this is
that the present authors studied symmetric queries in earlier work [12]. Symmetric
queries are by definition queries on a collection of sets the order of which is irrele-
vant for the result. Results about the genericity of first-order logic [5,19] and the
equivalence of the relational algebra and the nested relational algebra for queries
with unnested inputs and outputs [20] yield that SyCALC queries can only express
symmetric queries, and, therefore, this language was also an ideal tool to study these
queries. In the present authors’ earlier work [12], it became clear very quickly that
queries that could be solved merely by counting the number of elements in certain

26 Jelle Hellings et al.

sets (as opposed to the nature and interrelationships of these elements) formed
an important subclass of the symmetric queries, also from a practical perspective.
In the present work, the focus was therefore shifted from symmetric queries to
counting-only queries. It remains interesting, however, to generalize the concept of
counting query to a more general context than the one considered here, and this
is definitely a topic for future research.

Although generalized quantifiers are not the subject of this paper, several
counting-only queries can alternatively be expressed using generalized quanti-
fiers [4,21,26], as already mentioned in the Introduction. Some of these quantifiers,
such as ‘takes all’, ‘takes some’, and ‘takes no’ have a set-based flavor, while others,
such as ‘takes at least k’ or ‘takes all but k’ have more of a counting flavor. More-
over, set-based generalized quantifiers can often be translated into counting-based
quantifiers, and vice-versa.

This is actually not coincidential, as pointed out by Westerst̊al [28]. Westerst̊al
calls a generalized quantifier monadic if it involves subsets of the universe and
isomorphism-closed if it yields the same truth value for isomorphic structures (in a
data query context, this property is better known as genericity [27]). Notice that
the generalized quantifiers considered above (and in particular the set-based ones)
are both monadic and isomorphism-closed. Westerst̊al points out that monadic
isomorphism-closed quantifiers deal only with sizes of set rather than the sets
themselves. In particular, emptiness is equivalent to zero-cardinality, and this sim-
ple fact allows for the conversion of set relationships to cardinality constraints,
and vice-versa.

10 Conclusion and discussion

In this paper, we studied so-called counting-only queries on bag-of-sets data, which
can be answered by only counting the occurrence of itemsets of objects. In partic-
ular, we identified and studied the syntactic counting-only fragments QuineCALC

and SimpleCALC of first-order logic. We showed that SimpleCALC is equivalent
to GCount, the language that expresses counting-only queries by using general-
ized counting terms. These query languages can express many practically relevant
queries other than the usual classes of “well-behaved” first-order queries—such as
the conjunctive queries, the monadic first-order logic, and the two-variable frag-
ments of first-order logic—while, at the same time, still being simple enough for
satisfiability, validity, query containment, and query equivalence to be decidable.
We have summarized our findings in Figure 3.

We have identified several directions for future research:

1. In this paper, we have studied the formal aspect of counting-only first-order
queries, but we have not yet studied practical issues such as query evaluation.
Since the queries we study are all first-order queries, we can, off course, bor-
row standard techniques from first-order logic for their evaluation. One may
wonder, however, if some of the more restricted classes considered in this pa-
per allow for more efficient query evaluation, for example by using specialized
counting-only index structures.
As an example, consider GCount. Queries in GCount provide a direct connection
to an underlying frequent itemset problem, which can be exploited to further

First-order definable counting-only queries 27

Counting-only queries

First-order definable queries (SyCALC)

Q8

...
...

...
...

QuineCALC-1 ≡
BasicGCount-1

QuineCALC-2 ≡
BasicGCount-2

QuineCALC-3 ≡
BasicGCount-3

QuineCALC ≡
BasicGCount]

Q1

Q3, Q4

SimpleCALC-1 ≡
GCount-1

SimpleCALC-2 ≡
GCount-2

SimpleCALC-3 ≡
GCount-3

SimpleCALC ≡
GCount

Q5

Q7

1-SyCALC

2-SyCALC

3-SyCALC

Counting-only
SyCALC

set-ids

Q10

QuineCALC-0 ≡ SimpleCALC-0 ≡ 0-SyCALC ≡
BasicGCount-0 ≡ GCount-0

Q6

3-counting-only queries

2-counting-only queries

1-counting-only queries

Q2

0-counting-only queries

Q9

Fig. 3 Main relationships between the query languages considered. The counting-only lan-
guages are highlighted in dark-grey, and the first-order definable languages in light gray. A
language to the left and/or below another language, is less expressive than the latter. Separate
boxes also indicate strict separation in expressive power. The light gray area at the bottom
indicates the first-order definable counting-only queries for which satisfiability is in EXPTIME,
the medium-light gray area on the left indicates the first-order definable counting-only queries
for which satisfiability is NEXPTIME-complete, and the medium-dark gray area in the middle
indicates the first-order definable counting-only queries for which satisfiability is undecidable.
The example queries Q1–Q6 (Introduction), Q7 (Example 2.6), Q8 (proof of Proposition 4.4),
Q9 (proof of Proposition 7.3), and Q10 (proof of Proposition 7.4) are added to the smallest
language in which they can be expressed.

optimize query evaluation. A good example of such a technique is the FP-tree
used by the FP-Growth Algorithm [7,14]. The FP-tree can be used as an index
to quickly find candidate sets of up-to-k-objects that have a minimum count,
and prune away all other sets of up-to-k-objects without any counting. Due to
these implementation optimization opportunities and the prevalence of count-
ing-only queries, we believe that the evaluation of these GCount queries and
their relationship to frequent itemset mining deserves a deeper understanding.

2. In the Introduction, we have already mentioned that the bag-of-sets data model
and the notion of counting-only query can easily be generalized, e.g., to a model
with relations between more than two disjoint domains. Therefore, it is only
natural to wonder if the concepts we developed generalize to a richer data
model without giving up on the well-behaved nature of SimpleCALC or GCount.

3. In the Introduction, we also mentioned connections between set theory and the
bags-of-sets data model. For example, certain comparisons of counts can be
linked to set-theoretic comparisons. We believe that these connections deserve
further investigation.

4. From a more theoretical perspective, there are several open problems for fur-
ther investigation. For example, we do not yet know if it is decidable whether a

28 Jelle Hellings et al.

given (k+1)-counting-only query is also k-counting-only. Also the precise com-
plexity of satisfiability and the related decision problems for 1-SyCALC remain
open. Crucial in pinpointing an exact upper-bound on the complexity of these
decision problems is finding the exact upper-bound on the complexity of model
checking, which might be better than the worst-case upper-bound for model
checking general first-order logic.

5. In Section 7 we introduced the set-ids query, a query in 2-SyCALC not express-
ible in SimpleCALC. This query asks whether each set in a structure is uniquely
identified by some object. It remains open to identify queries in k-SyCALC,
k > 2, that are not (k-1)-counting-only and not expressible in SimpleCALC. A
positive result on this would strengthen our understanding of the hierarchy of
counting-only queries as studied in Section 7, as it would provide a hierarchy
of counting-only queries in SyCALC not expressible in SimpleCALC.

6. Counting is only one type of measure that can be used to define practical
queries on bag-of-sets data, and we have seen that taking counting into account
leads to naturally definable and well-behaved query languages. Many other
practical types of measure exist [24], hence it is only natural to ask if these
measures can be captured in an encompassing framework that leads, for each
measure, to naturally definable and well-behaved query languages.

7. As we have shown in this paper, not all counting-only queries are first-order
definable. To express some of these queries, one might consider augmenting
first-order logic with non-first-order definable counting-based quantifiers and
predicates such as the predicate even [16]. We believe that it is worthwhile to
study whether one can construct such query languages while, at the same time,
retain the well-behaved nature of SimpleCALC and GCount.

References

1. Abiteboul, S., Hull, R., Vianu, V. (eds.): Foundations of Databases: The Logical Level,
1st edn. Addison-Wesley Longman Publishing Co., Inc. (1995)

2. Anderson, I.: Combinatorics of Finite Sets. Dover Publications (2011)
3. Bachmair, L., Ganzinger, H., Waldmann, U.: Set constraints are the monadic class. In:

Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science, pp. 75–83
(1993)

4. Badia, A., Van Gucht, D., Gyssens, M.: Querying with Generalized Quantifiers, pp. 235–
258. Springer US, Boston, MA (1995)

5. Bancilhon, F.: On the completeness of query languages for relational data bases. In:
J. Winkowski (ed.) Mathematical Foundations of Computer Science 1978, Proceedings,
7th Symposium, Zakopane, Poland, September 4-8, 1978, Lecture Notes in Computer
Science, vol. 64, pp. 112–123. Springer (1978). DOI 10.1007/3-540-08921-7 60. URL
https://doi.org/10.1007/3-540-08921-7 60

6. Bayer, A.E., Smart, J.C., McLaughlin, G.W.: Mapping intellectual structure of a scientific
subfield through author cocitations. Journal of the American Society for Information
Science 41(6), 444—-452 (1990)

7. Calders, T., Goethals, B.: Non-derivable itemset mining. Data Mining and Knowledge
Discovery 14(1), 171–206 (2007)

8. Fletcher, G.H.L., Van Den Bussche, J., Van Gucht, D., Vansummeren, S.: Towards a theory
of search queries. ACM Trans. Database Syst. 35(4), 28:1–28:33 (2010)

9. Goethals, B.: Survey on frequent pattern mining. Tech. rep., University of Helsinki (2003)
10. Grädel, E., Otto, M.: On logics with two variables. Theoretical Computer Science 224(1–

2), 73–113 (1999)
11. Grohe, M.: Finite variable logics in descriptive complexity theory. The Bulletin of Symbolic

Logic 4, 345–398 (1998)

First-order definable counting-only queries 29

12. Gyssens, M., Hellings, J., Paredaens, J., Van Gucht, D., Wijsen, J., Wu, Y.: Calculi for
symmetric queries. Submitted (2019)

13. Gyssens, M., Paredaens, J., Van Gucht, D., Wijsen, J., Wu, Y.: An approach towards the
study of symmetric queries. Proc. VLDB Endow. 7(1), 25–36 (2013)

14. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation:
A frequent-pattern tree approach. Data Mining and Knowledge Discovery 8(1), 53–87
(2004)

15. Hellings, J., Gyssens, M., Van Gucht, D., Wu, Y.: First-order definable counting-only
queries. In: Foundations of Information and Knowledge Systems, pp. 225–243. Springer
International Publishing (2018)

16. Kuske, D., Schweikardt, N.: First-order logic with counting. In: 2017 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–12 (2017)

17. Lewis, H.R.: Complexity results for classes of quantificational formulas. Journal of Com-
puter and System Sciences 21(3), 317–353 (1980)

18. Libkin, L.: Elements of Finite Model Theory. Springer Berlin Heidelberg (2004)
19. Paredaens, J.: On the expressive power of the relational algebra. Inf. Process. Lett. 7(2),

107–111 (1978). DOI 10.1016/0020-0190(78)90055-8. URL https://doi.org/10.1016/0020-
0190(78)90055-8

20. Paredaens, J., Van Gucht, D.: Converting nested algebra expressions into flat algebra ex-
pressions. ACM Trans. Database Syst. 17(1), 65–93 (1992). DOI 10.1145/128765.128768.
URL https://doi.org/10.1145/128765.128768

21. Peters, S., Westerst̊ahl, D.: Quantifiers in Language and Logic. Oxford University Press
(2008). DOI 10.1093/acprof:oso/9780199291267.001.0001

22. Quine, W.V.: Selected Logic Papers. Harvard University Press (1995)
23. Sayrafi, B., Van Gucht, D.: Differential constraints. In: Proceedings of the Twenty-fourth

ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp.
348–357. ACM (2005)

24. Sayrafi, B., Van Gucht, D., Gyssens, M.: Measures in databases and data mining.
Tech. Rep. TR602, Indiana University (2004). URL https://www.cs.indiana.edu/cgi-
bin/techreports/TRNNN.cgi?trnum=TR602

25. Thomas, S.J., Fischer, P.C.: Nested relational structures. Advances in Computing Research
3, 269–307 (1986)

26. Väänänen, J.: Generalized quantifiers, an introduction. In: Generalized Quantifiers and
Computation: 9th European Summer School in Logic, Language, and Information, pp.
1–17. Springer Berlin Heidelberg (1999)

27. Vianu, V., Van Gucht, D.: Computationally complete relational query languages. In:
L. Liu, M.T. Özsu (eds.) Encyclopedia of Database Systems, 1st edn., pp. 1–7. Springer
New York, New York, NY (2017)

28. Westerst̊ahl, D.: Generalized quantifiers. In: E.N. Zalta (ed.) The Stanford Encyclopedia
of Philosophy, winter 2016 edn. Metaphysics Research Lab, Stanford University (2016)

