Graph query optimization using semi-join rewritings

Jelle Hellings¹ jelle.hellins@uhasselt.be

Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium

 $^{^{1}\}mbox{Joint}$ work with Catherine L. Pilachowski, Dirk Van Gucht, Marc Gyssens, and Yuqing Wu.

Query: 'Great-grandparents and their friends'

Query: 'Great-grandparents and their friends'

► (Great-grandparents, descendant): parentOf ∘ parentOf ∘ parentOf

Query: 'Great-grandparents and their friends'

- ► (Great-grandparents, descendant): parentOf ∘ parentOf ∘ parentOf
- Great-grandparents: $\pi_1[\mathsf{parentOf} \circ \mathsf{parentOf} \circ \mathsf{parentOf}]$

Query: 'Great-grandparents and their friends'

- $\begin{tabular}{ll} \begin{tabular}{ll} \beg$
- ► Great-grandparents: $\pi_1[\mathsf{parentOf} \circ \mathsf{parentOf}]$
- ► Complete query: $\pi_1[\mathsf{parentOf} \circ \cdots \circ \mathsf{parentOf}] \circ \mathsf{friendOf}$

Graph Query Language

$$\underline{\operatorname{id}} \mid \operatorname{di} \mid \underline{\ell} \mid \ell^{\smallfrown} \mid \pi_{j}[e] \mid \underline{\pi_{j}}[e] \mid \underline{e \circ e} \mid \underline{e \cup e} \mid e \cap e \mid e - e \mid \underline{[e]^{*}}$$

Regular Path Queries

Graph Query Language

$$\underline{\operatorname{id}}\mid\operatorname{di}\mid\underline{\ell}\mid\underline{\ell}\cap \underline{\ell}\cap \underline{m_j[e]}\mid\overline{m_j[e]}\mid\underline{e\circ e}\mid\underline{e\cup e}\mid\underline{e\cap e}\mid\underline{e\cap e}\mid\underline{e-e}\mid\underline{[e]^*}$$

- ► Regular Path Queries
- ► Nested Regular Path Queries

Graph Query Language

$$\underline{\operatorname{id}}\mid\operatorname{di}\mid\underline{\ell}\mid\underline{\ell}\cap \underline{\ell}\cap \underline{m_j[e]}\mid\overline{m_j[e]}\mid\underline{e\circ e}\mid\underline{e\cup e}\mid\underline{e\cap e}\mid\underline{e\cap e}\mid\underline{e-e}\mid\underline{[e]^*}$$

- ► Regular Path Queries
- Nested Regular Path Queries
- ► FO[3] augmented with transitive closure:

graph-navigational core of XPath, GXPath, SPARQL, ...

 $\mathrm{id} \mid \mathrm{di} \mid \ell \mid \ell^{\smallfrown} \mid \pi_{j}[e] \mid \overline{\pi}_{j}[e] \mid e \circ e \mid e \cup e \mid e \cap e \mid e - e \mid [e]^{*}$

$$\underline{\operatorname{id}} \mid \underline{\operatorname{di}} \mid \underline{\ell} \mid \underline{\ell} \cap \underline{\ell} \cap \underline{\ell} = \underline{m_j[e]} \mid \underline{m_j[e]} \mid \underline{e} \circ \underline{e} \mid \underline{e} \cup \underline{e} \mid \underline{e} \cap \underline{e} \mid \underline{e} - \underline{e} \mid \underline{[e]^*}$$

► 'Easy to evaluate'

$$\underline{\operatorname{id}} \mid \underline{\operatorname{di}} \mid \underline{\ell} \mid \underline{\ell} \cap |\pi_{j}[e] \mid \overline{\pi_{j}}[e] \mid \underline{e \circ e} \mid \underline{e \cup e} \mid \underline{e \cap e} \mid \underline{e - e} \mid \underline{[e]^{*}}$$

- 'Easy to evaluate'
- 'Expensive to evaluate'

$$\operatorname{id} \mid \operatorname{di} \mid \underline{\ell} \mid \underline{\ell} \cap |\pi_{j}[e] \mid \overline{\pi}_{j}[e] \mid \underline{e} \circ \underline{e} \mid \underline{e} \cup \underline{e} \mid \underline{e} \cap \underline{e} \mid \underline{e} - \underline{e} \mid [\underline{e}]^{*}$$

- 'Easy to evaluate'
- 'Expensive to evaluate'

Idea: add partial alternatives for \circ and $\left[\cdot\right]^*$

 $\pi_1[\mathsf{parentOf} \circ \mathsf{parentOf} \circ \mathsf{parentOf}] \circ \mathsf{friendOf}$

can be rewritten into

 $\pi_1[\mathsf{parentOf} \ltimes (\mathsf{parentOf} \ltimes \mathsf{parentOf})] \rtimes \mathsf{friendOf}.$

Query Optimization by rewriting?

Query Optimization by rewriting?

Problem

 $\mathsf{parentOf} \circ \mathsf{parentOf} \circ \mathsf{parentOf}$ is not equivalent to $\mathsf{parentOf} \ltimes (\mathsf{parentOf} \ltimes \mathsf{parentOf}).$

Solution

j-test-equivalent rewriting: we have $e_1 \equiv_j e_2$, if, for every graph \mathcal{G} ,

$$\pi_j[e_1]\langle\mathcal{G}\rangle = \pi_j[e_2]\langle\mathcal{G}\rangle.$$

- ▶ Rewrite into ⋈ and ⋈
- ▶ Rewrite $[\cdot]^*$ into $fp_{j,\mathfrak{N}}[\cdot; \cdot]$ (fixpoint iteration)

$$\begin{split} \operatorname{id} \mid \operatorname{di} \mid \ell \mid \ell^{\smallfrown} \mid \pi_{j}[e] \mid \overline{\pi}_{j}[e] \mid e \circ e \mid e \cup e \mid e \cap e \mid e - e \mid [e]^{*} \mid \\ e \ltimes e \mid e \rtimes e \mid \mathfrak{N} \mid \mathsf{fp}_{j,\mathfrak{N}}[e;\ e] \end{split}$$

- ▶ Rewrite into ⋈ and ⋈
- ▶ Rewrite $[\cdot]^*$ into $fp_{j,\mathfrak{N}}[\cdot; \cdot]$ (fixpoint iteration)

$$\underbrace{\operatorname{id} \mid \operatorname{\underline{di}} \mid \underline{\ell} \mid \underline{\ell} \cap \mid \underline{\pi_{j}[e]} \mid \overline{\pi_{j}[e]} \mid e \circ e \mid \underline{e \cup e} \mid \underline{e \cap e} \mid \underline{e - e} \mid [e]^{*} \mid}_{\underline{e \times e} \mid \underline{e} \times \underline{e} \mid \underline{e \times e} \mid \underline{\mathfrak{N}} \mid \mathsf{fp}_{j,\mathfrak{N}}[e;\ e]$$

Analysis

► FO[2]

- ▶ Rewrite into ⋈ and ⋈
- ▶ Rewrite $[\cdot]^*$ into $fp_{j,\mathfrak{N}}[\cdot; \cdot]$ (fixpoint iteration)

```
\underline{\operatorname{id}} \mid \underline{\operatorname{di}} \mid \underline{\ell} \mid \underline{\ell} \cap |\underline{\pi_{j}[e]} \mid \underline{\overline{\pi_{j}[e]}} \mid e \circ e \mid \underline{e \cup e} \mid \underline{e \cap e} \mid \underline{e - e} \mid [e]^{*} \mid \underline{e \times e} \mid \underline{e \times e} \mid \underline{m} \mid \underline{\mathsf{fp}_{j,\mathfrak{N}}[e;\ e]}
```

Analysis

- ► FO[2] and FO[2]-like recursion
- ▶ For j-test-equivalent rewriting: only restrictions on \cap and -

- ► Rewrite ∘ into × and ×
- ▶ Rewrite $[\cdot]^*$ into $fp_{j,\mathfrak{N}}[\cdot; \cdot]$ (fixpoint iteration)

```
\underbrace{\operatorname{id} \mid \operatorname{di} \mid \underline{\ell} \mid \underline{\ell} \cap \mid \underline{\pi_{j}[e]} \mid \overline{\pi_{j}[e]} \mid e \circ e \mid \underline{e \cup e} \mid \underline{e \cap e} \mid \underline{e - e} \mid [e]^{*} \mid}_{\underline{e \ltimes e} \mid \underline{e} \rtimes \underline{e} \mid \underline{\mathfrak{N}} \mid \underline{\mathsf{fp}_{j,\mathfrak{N}}[e;\ e]}
```

Analysis

- ► FO[2] and FO[2]-like recursion
- ▶ For j-test-equivalent rewriting: only restrictions on \cap and -
- Rewriting is sound and 'complete'

- ▶ Rewrite into ⋈ and ⋈
- ▶ Rewrite $[\cdot]^*$ into $fp_{j,\mathfrak{N}}[\cdot; \cdot]$ (fixpoint iteration)

```
\underline{\operatorname{id}} \mid \underline{\operatorname{di}} \mid \underline{\ell} \mid \underline{\ell} \cap |\underline{\pi_{j}[e]} \mid \underline{\pi_{j}[e]} \mid e \circ e \mid \underline{e \cup e} \mid \underline{e \cap e} \mid \underline{e - e} \mid [e]^{*} \mid \underline{e \times e} \mid \underline{e \times e} \mid \underline{\mathfrak{M}} \mid \underline{\mathsf{fp}_{j,\mathfrak{M}}[e;\ e]}
```

Analysis

- ► FO[2] and FO[2]-like recursion
- lacktriangleright For j-test-equivalent rewriting: only restrictions on \cap and -
- Rewriting is sound and 'complete'
- ► Rewriting results in a 'small' query: number of steps needed to evaluate the result is twice the length of the original query

Future Work

- Study (small extensions of) FO[2] in more detail
- ► Further query optimization using information on the data
- Apply similar techniques to relational databases (SQL)

Fixpoints and transitive closure (example)

The transitive closure query

 $\pi_1[[\mathsf{parentOf} \circ \overline{\pi}_1[\mathsf{researcherAt}]]^* \circ \mathsf{ownsPet}]$

Fixpoints and transitive closure (example)

The transitive closure query

$$\pi_1[[\mathsf{parentOf} \circ \overline{\pi}_1[\mathsf{researcherAt}]]^* \circ \mathsf{ownsPet}]$$

is equivalent to the FO[2]-like query

```
\mathsf{fp}_{1,\mathfrak{N}}[\mathsf{parentOf} \ltimes \overline{\pi}_1[\mathsf{researcherAt}] \ltimes \mathfrak{N}; \ \mathsf{ownsPet}].
```