
1/22

Relative Expressive Power of Downward Fragments
of Navigational Query Languages on Trees and

Chains

Jelle Hellings
Hasselt University

Joint work with Marc Gyssens, Yuqing Wu, Dirk Van Gucht, Jan
Van den Bussche, Stijn Vansummeren, and George H. L. Fletcher

2/22

Overview

Introduction

Summary of the results

The boolean collapse to N ()

The collapse of ∩ and \

Concluding remarks

3/22

Querying graphs

Alice

Bob

motherOf

Craig

Dan

motherOf

Eve

fatherOf

worksWith
Faythe

friendOf

worksWith

friendOf

3/22

Querying graphs

π1[motherOf] ◦ [motherOf ∪ fatherOf]+

Alice

Bob

motherOf

Craig

Dan

motherOf

Eve

fatherOf

worksWith
Faythe

friendOf

worksWith

friendOf

3/22

Querying graphs

π1[friendOf \ worksWith]

Alice

Bob

motherOf

Craig

Dan

motherOf

Eve

fatherOf

worksWith
Faythe

friendOf

worksWith

friendOf

4/22

Navigational Expressions

e := ∅ | id | ` (for ` an edge-label) | e ◦ e | e ∪ e |
[e]+ | π1[e] | π2[e] | π1[e] | π2[e] | e ∩ e | e \ e

Question
Are all these operations necessary?
How does each operator influence expressive power?

Preliminary answer
We can use basic rewriting:

e1 ∩ e2 = e1 \ (e1 \ e2)

πi [e] = πi [πi [e]]

πi [e] = id \ πi [e]

5/22

Problem statement

We start with {∅, id,∪, ◦} and edge-labels

I Add any subset F of {π, π,+,∩, \},
We denote the resulting query language by N (F)

I Compare the expressive power of resulting languages
I Graphs: already fully studied by Fletcher et al.
I Trees: a few results are known (XML)

Definition
Let F ⊆ {+, π, π,∩, \}.
F is the superset of F obtained by “basic rewriting”.

Example
{π, \} = {π, π,∩, \}

6/22

Overview

Introduction

Summary of the results

The boolean collapse to N ()

The collapse of ∩ and \

Concluding remarks

7/22

Results on trees and chains: the main results

I On labeled trees, we can do without ∩ and \:
we have N (F) �p N (F \ {∩, \})

I For boolean queries:
I On unlabeled trees, only π adds expressive power:

we have N (+, π,∩) �b N ()
I On labeled chains, we can do without π:

we have N (+, π) �b N (F \ {π})

8/22

Results on trees and chains
Boolean queries Path queries

Chains Trees Chains and Trees

La
be

le
d

N ()
N (∩)
N (\)
N (π)

N (π,∩)

N (π)
N (π,∩)
N (π, \)

N (+)
N (+,∩)
N (+, \)
N (+, π)
N (+, π,∩)

N (+, π)
N (+, π, \)

N ()
N (∩)
N (\)

N (π)
N (π,∩)

N (π)
N (π,∩)
N (π, \)

N (+)
N (+,∩)
N (+, \)

N (+, π)
N (+, π,∩)

N (+, π)
N (+, π, \)

N ()
N (∩)
N (\)

N (π)
N (π,∩)

N (π)
N (π,∩)
N (π, \)

N (+)
N (+,∩)
N (+, \)

N (+, π)
N (+, π,∩)

N (+, π)
N (+, π, \)

U
nl

ab
el

ed

N ()
N (∩)
N (\)
N (π)

N (π,∩)

N (+)
N (+,∩)
N (+, \)
N (+, π)
N (+, π,∩)

N (π)
N (π,∩)
N (π, \)

N (+, π)
N (+, π, \)

N ()
N (∩)
N (\)
N (π)

N (π,∩)

N (+)
N (+,∩)
N (+, \)
N (+, π)
N (+, π,∩)

N (π)
N (π,∩)
N (π, \)

N (+, π)
N (+, π, \)

N ()
N (∩)
N (\)

N (π)
N (π,∩)

N (π)
N (π,∩)
N (π, \)

N (+)
N (+,∩)
N (+, \)

N (+, π)
N (+, π,∩)

N (+, π)
N (+, π, \)

9/22

Overview

Introduction

Summary of the results

The boolean collapse to N ()

The collapse of ∩ and \

Concluding remarks

10/22

The boolean collapse to N () on unlabeled trees

Theorem
Let F ⊆ {+, π,∩}. On unlabeled trees we have N (F) �b N ().

Definition (homomorphism)
A mapping h : N1 → N2 is a homomorphism from G1 = (N1, E1) to
G2 = (N2, E2) if (m, n) ∈ E1 implies (h(m), h(n)) ∈ E2.

Proposition
The language N (+, π,∩) is closed under homomorphisms: if there
is a homomorphism h from G1 to G2, then h(e(G1)) ⊆ e(G2).

11/22

Proof: N (+, π,∩) cannot distinguish trees from chains

I Provide homomorphism from tree T to chain C
I Provide homomorphism from chain C to tree T

T C

11/22

Proof: N (+, π,∩) cannot distinguish trees from chains

I Provide homomorphism from tree T to chain C

I Provide homomorphism from chain C to tree T

T C

11/22

Proof: N (+, π,∩) cannot distinguish trees from chains

I Provide homomorphism from tree T to chain C
I Provide homomorphism from chain C to tree T

T C

12/22

Proof: N (+, π,∩) can only query on depth

Conclusion
Even N (+, π,∩) can only express queries of the form:

The height of the tree is at least k
(
= `k = ` ◦ . . . ◦ `︸ ︷︷ ︸

k terms

)

Theorem
Let F ⊆ {+, π,∩}. On unlabeled trees we have N (F) �b N ().

13/22

Overview

Introduction

Summary of the results

The boolean collapse to N ()

The collapse of ∩ and \

Concluding remarks

14/22

Removing ∩ and \ from simple queries

Example[
`3
]+ ∩ [`7]+ =

[
`21]+[

`3
]+ \ [`7]+ =

(
`3 ∪ `6 ∪ `9 ∪ `12 ∪ `15 ∪ `18) ◦ ([`21]+ ∪ id

)
Basic observations

I Expressions in N (+) are regular path queries
I Regular languages (expressions) are closed under ∩ and \

Question
How to generalize to π and π?

15/22

Condition automata

Definition (condition automaton)
A condition automaton is a 7-tuple A = (S ,Σ,C , I ,F , δ, γ).

`2

`2

`1

id

`2

q1

q2

q3

p1

p2

p3

{π1[`3]}

{π2
[
`1

2], π1
[
`3

3]}

16/22

Semantics of condition automata

I Take a path in automaton from initial to final state
I Map to a path in a tree from m to n with equal labeling
I State s maps to node k : k satisfies the conditions of s

×

n1

`2

n2

`2

n5

`1

n3

`3

n6

`1

n7

`2

n4

`2

n8

q1

q2

`2

q2

`1

q3

`2

{π1[`3]}

{π1[`3]}

16/22

Semantics of condition automata

I Take a path in automaton from initial to final state
I Map to a path in a tree from m to n with equal labeling
I State s maps to node k : k satisfies the conditions of s

×

n1

`2

n2

`2

n5

`1

n3

`3

n6

`1

n7

`2

n4

`2

n8

q1

q2

`2

q2

`1

q3

`2

{π1[`3]}

{π1[`3]}

16/22

Semantics of condition automata

I Take a path in automaton from initial to final state
I Map to a path in a tree from m to n with equal labeling
I State s maps to node k : k satisfies the conditions of s

×

n1

`2

n2

`2

n5

`1

n3

`3

n6

`1

n7

`2

n4

`2

n8

q1

q2

`2

q2

`1

q3

`2

{π1[`3]}

{π1[`3]}

17/22

Condition automata and navigational expressions

Proposition
Let F ⊆ {+, π, π}. The class of condition automata specified for
N (F) in the following table is path-equivalent with N (F).

Navigational language Class of condition automata
N () {+, π, π}-free and acyclic.
N (π) {+, π}-free and acyclic.
N (π, π) {+}-free and acyclic.
N (+) {π, π}-free.
N (+, π) {π}-free.
N (+, π, π) no restrictions.

18/22

Condition automata and intersect

I Basically: use cross-product construction
I Take care of id-transitions by first removing them

id

id

`

`

`

`

q1

q2

q3q4

{c1}

{c2}

{c3}{c4}

{c1, c2, c3}

{c1, c2} {c4}

{c1} {c3}

Proposition
Condition automata are closed under ∩.

18/22

Condition automata and intersect

I Basically: use cross-product construction
I Take care of id-transitions by first removing them

id

id

`

`

`

`

q1

q2

q3q4

{c1}

{c2}

{c3}{c4}

{c1, c2, c3}

{c1, c2} {c4}

{c1} {c3}

Proposition
Condition automata are closed under ∩.

19/22

Condition automata and difference

I Difference: in terms of ∩ and complement: S \ T = S ∩ T

I In our setting: restrict T to the downward complement T ↓

Definition (deterministic condition automaton)

I For each node n: there exists exactly one initial state s such
that n satisfies s.

I If node n satisifies state q, then, for each edge (n, `,m) there
exists exactly one transition (q, `, p) such that p satisfies m.

`

`

`

`

q1

q2

p1

q3

{π2[`]} {π2[`]}

20/22

Condition automata and downward complement

I Downward complement of deterministic condition automaton
Swap the final states

I Conclusion: if we can construct a deterministic condition
automaton, then condition automata are closed under \

Proposition
For every condition automaton there is a path-equivalent
deterministic condition automaton.
In this construction π is introduced if π was already used.

Theorem
On labeled trees we have N (F) �p N (F \ {∩, \}).

21/22

Overview

Introduction

Summary of the results

The boolean collapse to N ()

The collapse of ∩ and \

Concluding remarks

22/22

Conclusions and Future Work

I Full characterization of the expressive power of downward
navigational expressions

I On trees and on chains
I For boolean queries and path queries

I Typical non-downward operators are omitted
I Next: we also include converse and diversity
I We have some initial results

22/22

Results on graphs

Proposition (Fletcher et al. ICDT’11)
Let F1,F2 ⊆ {+, π, π,∩, \}.

I Labeled graphs:
I N (F1) �b N (F2): if F1 ⊆ F2.

I Unlabeled Graphs:
I N (F1) �p N (F2): if F1 ⊆ F2.
I N (F1) �b N (F2): if F1 ⊆ F2 or if

F1 ⊆ {π} and F2 = F1 ∪ {+}.

	Introduction
	Summary of the results
	The boolean collapse to N()
	The collapse of and
	Concluding remarks

