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Querying graphs
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Querying graphs

π1[motherOf] ◦ [motherOf ∪ fatherOf]+
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Querying graphs
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Navigational Expressions

e := ∅ | id | ` (for ` an edge-label) | e ◦ e | e ∪ e |
[e]+ | π1[e] | π2[e] | π1[e] | π2[e] | e ∩ e | e \ e

Question
Are all these operations necessary?
How does each operator influence expressive power?

Preliminary answer
We can use basic rewriting:

e1 ∩ e2 = e1 \ (e1 \ e2)

πi [e] = πi [πi [e]]

πi [e] = id \ πi [e]
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Problem statement

We start with {∅, id,∪, ◦} and edge-labels

I Add any subset F of {π, π,+,∩, \},
We denote the resulting query language by N (F)

I Compare the expressive power of resulting languages
I Graphs: already fully studied by Fletcher et al.
I Trees: a few results are known (XML)

Definition
Let F ⊆ {+, π, π,∩, \}.
F is the superset of F obtained by “basic rewriting”.

Example
{π, \} = {π, π,∩, \}



6/22

Overview

Introduction

Summary of the results

The boolean collapse to N ()

The collapse of ∩ and \

Concluding remarks



7/22

Results on trees and chains: the main results

I On labeled trees, we can do without ∩ and \:
we have N (F) �p N (F \ {∩, \})

I For boolean queries:
I On unlabeled trees, only π adds expressive power:

we have N (+, π,∩) �b N ()
I On labeled chains, we can do without π:

we have N (+, π) �b N (F \ {π})
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Results on trees and chains
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The boolean collapse to N () on unlabeled trees

Theorem
Let F ⊆ {+, π,∩}. On unlabeled trees we have N (F) �b N ().

Definition (homomorphism)
A mapping h : N1 → N2 is a homomorphism from G1 = (N1, E1) to
G2 = (N2, E2) if (m, n) ∈ E1 implies (h(m), h(n)) ∈ E2.

Proposition
The language N (+, π,∩) is closed under homomorphisms: if there
is a homomorphism h from G1 to G2, then h(e(G1)) ⊆ e(G2).



11/22

Proof: N (+, π,∩) cannot distinguish trees from chains

I Provide homomorphism from tree T to chain C
I Provide homomorphism from chain C to tree T

T C
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T C
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Proof: N (+, π,∩) cannot distinguish trees from chains

I Provide homomorphism from tree T to chain C
I Provide homomorphism from chain C to tree T

T C
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Proof: N (+, π,∩) can only query on depth

Conclusion
Even N (+, π,∩) can only express queries of the form:

The height of the tree is at least k
(
= `k = ` ◦ . . . ◦ `︸ ︷︷ ︸

k terms

)

Theorem
Let F ⊆ {+, π,∩}. On unlabeled trees we have N (F) �b N ().
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Removing ∩ and \ from simple queries

Example[
`3
]+ ∩ [`7]+ =

[
`21]+[

`3
]+ \ [`7]+ =

(
`3 ∪ `6 ∪ `9 ∪ `12 ∪ `15 ∪ `18) ◦ ([`21]+ ∪ id

)
Basic observations

I Expressions in N (+) are regular path queries
I Regular languages (expressions) are closed under ∩ and \

Question
How to generalize to π and π?
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Condition automata

Definition (condition automaton)
A condition automaton is a 7-tuple A = (S ,Σ,C , I ,F , δ, γ).
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Semantics of condition automata

I Take a path in automaton from initial to final state
I Map to a path in a tree from m to n with equal labeling
I State s maps to node k : k satisfies the conditions of s
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Condition automata and navigational expressions

Proposition
Let F ⊆ {+, π, π}. The class of condition automata specified for
N (F) in the following table is path-equivalent with N (F).

Navigational language Class of condition automata
N () {+, π, π}-free and acyclic.
N (π) {+, π}-free and acyclic.
N (π, π) {+}-free and acyclic.
N (+) {π, π}-free.
N (+, π) {π}-free.
N (+, π, π) no restrictions.
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Condition automata and intersect

I Basically: use cross-product construction
I Take care of id-transitions by first removing them
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Proposition
Condition automata are closed under ∩.



18/22

Condition automata and intersect

I Basically: use cross-product construction
I Take care of id-transitions by first removing them

id

id

`

`

`

`

q1

q2

q3q4

{c1}

{c2}

{c3}{c4}

{c1, c2, c3}

{c1, c2} {c4}

{c1} {c3}

Proposition
Condition automata are closed under ∩.



19/22

Condition automata and difference

I Difference: in terms of ∩ and complement: S \ T = S ∩ T

I In our setting: restrict T to the downward complement T ↓

Definition (deterministic condition automaton)

I For each node n: there exists exactly one initial state s such
that n satisfies s.

I If node n satisifies state q, then, for each edge (n, `,m) there
exists exactly one transition (q, `, p) such that p satisfies m.

`

`

`

`

q1

q2

p1

q3

{π2[`]} {π2[`]}
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Condition automata and downward complement

I Downward complement of deterministic condition automaton
Swap the final states

I Conclusion: if we can construct a deterministic condition
automaton, then condition automata are closed under \

Proposition
For every condition automaton there is a path-equivalent
deterministic condition automaton.
In this construction π is introduced if π was already used.

Theorem
On labeled trees we have N (F) �p N (F \ {∩, \}).
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Conclusions and Future Work

I Full characterization of the expressive power of downward
navigational expressions

I On trees and on chains
I For boolean queries and path queries

I Typical non-downward operators are omitted
I Next: we also include converse and diversity
I We have some initial results
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Results on graphs

Proposition (Fletcher et al. ICDT’11)
Let F1,F2 ⊆ {+, π, π,∩, \}.

I Labeled graphs:
I N (F1) �b N (F2): if F1 ⊆ F2.

I Unlabeled Graphs:
I N (F1) �p N (F2): if F1 ⊆ F2.
I N (F1) �b N (F2): if F1 ⊆ F2 or if

F1 ⊆ {π} and F2 = F1 ∪ {+}.


	Introduction
	Summary of the results
	The boolean collapse to N()
	The collapse of  and 
	Concluding remarks

