
Efficient External-Memory Bisimulation on DAGs

Jelle Hellings∗
Hasselt University and

Transnational University of
Limburg
Belgium

jelle.hellings@uhasselt.be

George H.L. Fletcher
Eindhoven University of

Technology
The Netherlands

g.h.l.fletcher@tue.nl

Herman Haverkort
Eindhoven University of

Technology
The Netherlands

cs.herman@haverkort.net

ABSTRACT
In this paper we introduce the first efficient external-memory
algorithm to compute the bisimilarity equivalence classes of
a directed acyclic graph (DAG). DAGs are commonly used
to model data in a wide variety of practical applications,
ranging from XML documents and data provenance models,
to web taxonomies and scientific workflows. In the study of
efficient reasoning over massive graphs, the notion of node
bisimilarity plays a central role. For example, grouping to-
gether bisimilar nodes in an XML data set is the first step
in many sophisticated approaches to building indexing data
structures for efficient XPath query evaluation. To date,
however, only internal-memory bisimulation algorithms have
been investigated. As the size of real-world DAG data sets
often exceeds available main memory, storage in external
memory becomes necessary. Hence, there is a practical need
for an efficient approach to computing bisimulation in ex-
ternal memory.

Our general algorithm has a worst-case IO-complexity of
O(Sort(|N |+ |E|)), where |N | and |E| are the numbers of
nodes and edges, resp., in the data graph and Sort(n) is
the number of accesses to external memory needed to sort
an input of size n. We also study specializations of this
algorithm to common variations of bisimulation for tree-
structured XML data sets. We empirically verify efficient
performance of the algorithms on graphs and XML docu-
ments having billions of nodes and edges, and find that the
algorithms can process such graphs efficiently even when
very limited internal memory is available. The proposed
algorithms are simple enough for practical implementation
and use, and open the door for further study of external-
memory bisimulation algorithms. To this end, the full open-
source C++ implementation has been made freely available.

∗Research done while at Eindhoven University of Technol-
ogy.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD ’12, May 20–24, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

Categories and Subject Descriptors
H.2.0 [Database Management]: General; F.2.2 [Analysis
Of Algorithms And Problem Complexity]: Nonnumer-
ical Algorithms and Problems

General Terms
Algorithms, Theory

Keywords
bisimulation, graphs, external memory, I/O

1. INTRODUCTION
Data modeled as directed acyclic graphs (DAGs) arise in

a diversity of practical applications such as biological and
biomedical ontologies [28], web folksonomies [25], scientific
workflows [30], semantic web schemas [9], business process
modeling [6, 12], data provenance modeling [22, 23], and the
widely adopted XML standard [1]. It is anticipated that the
variety, uses, and quantity of DAG-structured data sets will
only continue to grow in the future.

In each of these application areas, efficient searching and
querying on the data is a basic challenge. In reasoning over
massive data sets, typically index data structures are com-
puted and maintained to accelerate processing. These in-
dexes are essentially a reduction or summary of the under-
lying data. Efficiency is achieved by performing reasoning
over this reduction to the extent possible, rather than di-
rectly over the original data.

Many approaches to indexing have been investigated in
preceding decades. Reductions of data sets typically group
together data elements based on their shared values or sub-
structures in the data. In graphs, the notion of bisimulation
equivalence of nodes has proven to be an effective means
for indexing and compression (e.g., [1, 7, 14, 15, 17, 19, 21,
29]). Bisimulation, which is a fundamental notion arising in
a surprising range of contexts [27], is based on the structural
similarity of subgraphs. Intuitively, two nodes are bisimi-
lar to each other if they cannot be distinguished from each
other by the sequences of node labels that may appear on the
paths that start from these nodes, as well as from each of the
nodes on those paths. Grouping bisimilar nodes is known as
bisimulation partitioning. Blocks of bisimilar nodes are then
used as the basis for constructing indexing data structures
supporting efficient search and querying over the data.

Efficient internal-memory solutions for computing bisim-
ulation partitions have been investigated (e.g., [13, 15, 24]).
To scale to real-world data sets such as those discussed

above, it becomes necessary to consider DAGs resident in
external memory. In considering algorithms for such data,
the primary concern is to minimize disk IO operations due to
the high cost involved, relative to main-memory operations,
in performing reads and writes to disk.

Due to the random access nature of internal-memory al-
gorithms, the design of external-memory algorithms which
minimize disk IO typically requires a significant departure
from approaches taken for internal memory solutions [20]. In
particular, state-of-the-art internal-memory bisimulation al-
gorithms can not be directly adapted to IO-efficient external-
memory algorithms due to their inherent random access be-
haviour. While a study has been made on storing and query-
ing bisimulation partitions on disk [29], there has been to
our knowledge no approach developed to date for efficiently
computing bisimulation partitioning in external memory.

Motivated by these observations, in this paper we give the
first IO-efficient external-memory bisimulation algorithm for
DAGs. Our algorithm has a worst-case IO-complexity of
O(Sort(|N | + |E|)), where |N | and |E| are the number of
nodes and edges, resp., in the data graph and Sort(n) is
the number of accesses to external memory needed to sort
an input of size n. Efficiency is achieved by intelligent orga-
nization of the graph on disk, and by sophisticated process-
ing of the graph using global and local reorganization and
careful staging and use of local bisimulation information.
We establish the theoretical efficiency of the algorithm, and
demonstrate its practicality via a thorough empirical evalu-
ation on data sets having billions of nodes and edges.

Our algorithm is simple enough for practical implemen-
tation and use, and to serve as the basis for further study
and design of external-memory bisimulation algorithms. For
example, we also develop in this paper specializations of our
algorithm for computing common variations of bisimulation
for tree-structured graphs in the form of XML documents.
Furthermore, the complete implementation is open-source
and available for download.

We proceed in the paper as follows. In the next section, we
present basic definitions concerning our data model, bisimu-
lation equivalence, and the standard external-memory com-
putational model. In Section 3, we then present and theoret-
ically analyze our external-memory bisimulation algorithm.
In Section 4, we show how to specialize our general algorithm
for various bisimulation notions proposed for XML data. In
Section 5, we then present a thorough empirical analysis of
our approach, and conclude in Section 6 with a discussion
of future directions for research.

2. PRELIMINARIES

2.1 Graphs and bisimilarity
In the context of this paper, a graph G is a triple G =
〈N,E, l〉, where N is a finite set of nodes, E ⊆ N × N is
a directed edge relation, and l is a function with domain
N that assigns a label l(n) to every node n ∈ N . With a
slight abuse of terminology, we call n a child of m, and m
a parent of n, if and only if G contains an edge (m,n). Let
children(m) be the set of all children of m, and let parents(n)
be the set of all parents of n. Note that in our work we only
consider acyclic graphs. Furthermore, we assume that the
node set N is ordered in reverse topological order, that is,
children always precede their parents in the order. Assuming
a topological ordering is standard in the design of external

a

bb

c c

d

d

a

b

c

d

d

Figure 1: Two bisimilar directed acyclic graphs.

memory DAG algorithms [20]. Indeed, real world data is
often already ordered (e.g., XML documents), and, further-
more, practical approaches to topological sorting of massive
data sets are available [3].

Definition 1. Let G1 = 〈N1, E1, l1〉 and G2 = 〈N2, E2, l2〉
be two, possibly the same, graphs. Nodes n1 ∈ N1 and
n2 ∈ N2 are bisimilar to each other, denoted n1 ≈ n2, if
and only if:

1. the nodes have the same label: l1(n1) = l2(n2);

2. for every node n′1 ∈ children(n1) there is a node n′2 ∈
children(n2) such that n′1 ≈ n′2; and,

3. for every node n′2 ∈ children(n2) there is a node n′1 ∈
children(n1) such that n′1 ≈ n′2.

We can extend this notion to complete graphs as follows:

Definition 2. Let G1 = 〈N1, E1, l1〉 and G2 = 〈N2, E2, l2〉
be graphs. Graph G1 and G2 are bisimilar to each other,
denoted as G1 ≈ G2, if and only if:

1. for every node n1 ∈ N1 there is a node n2 ∈ N2 such
that n1 ≈ n2; and,

2. for every node n2 ∈ N2 there is a node n1 ∈ N1 such
that n1 ≈ n2.

Figure 1 shows two graphs that are bisimilar to each other.
The figure also shows with dotted lines how the nodes of one
graph are bisimilar to nodes of the other graph. Note that
in this figure all nodes with label a are bisimilar to each
other, all nodes with label b are bisimilar to each other, and
all nodes with label c are bisimilar to each other. Note,
however, that this does not hold for nodes with label d.

For each graph G there is a unique (up to isomorphism)
smallest graph (having the fewest nodes) that is bisimilar
to G; we call this smallest graph the maximum bisimulation
graph of G and denote it by G↓ = 〈N↓, E↓, l↓〉. In Figure 1,
the graph on the right is the maximum bisimulation graph
of itself. It is also the maximum bisimulation graph of the
graph on the left.

In the context of this paper, the bisimilarity index of a
graph G is a data structure that stores the maximum bisim-
ilarity graph G↓ of G, and stores, for each node n↓ ∈ N↓,
the set of nodes {n ∈ N : n↓ ≈ n}, i.e., the bisimulation
equivalence class of n↓.

A partition P of a graph G = 〈N,E, l〉 is a subdivision of
its nodes N into a set of blocks P = {N1, N2, ...} such that
each block Ni ∈ P is a non-empty subset of N , the blocks
are mutually disjoint, and their union is N . A bisimulation

partition of a graph G is a partition P of G such that the
blocks of P are exactly the bisimilarity equivalence classes
of G.

A partition P1 is a refinement of a partition P2 if and only
if for every P1 ∈ P1 there is exactly one P2 ∈ P2 such that
P1 ⊆ P2.

The rank rank(n) of a node n is defined as the maximum
number of edges on any path that starts at n. It is easily
proved by induction that m ≈ n implies rank(m) = rank(n),
and thus the bisimulation partition is a refinement of the
partition by rank.

2.2 Analysis of external-memory algorithms
In this paper, we investigate algorithms operating on data

that does not fit in main memory. Therefore we need to use
external memory, such as disks. In general external memory
is slow. In particular, there is a high latency: it takes a lot of
time to start reading or writing a random data item in exter-
nal memory, but after that a large block that is consecutive
in external memory can be read or written relatively fast.
Thus the performance of algorithms using external memory
is often dominated by the external-memory access patterns,
where algorithms that read from and write to disk sparingly
and in large blocks are at an advantage over algorithms that
access the disk often for small amounts of data.

We shall use the following standard computer model to
analyze the efficiency of our algorithms [2]. Our computer
has a fast memory with a limited size of M units of data,
and a slow, external memory of practically unlimited size.
The computer has a fast processing unit that can operate on
data in fast memory, but not on data in external memory.
Therefore, during operation of any algorithm on this com-
puter, data needs to be transferred between the two memo-
ries. This is done by moving data in blocks of size B; such
a transfer is called an IO. The block size B is assumed to
be large enough that the latency is dominated by the actual
transfer times, and thus, the time spent on external-memory
access is roughly proportional to the number of IOs.

The complexity of an external-memory algorithm can now
be expressed as the (asymptotic) number of IOs performed
by an algorithm, as a function of the input size and, possibly,
other parameters. Clearly, reading or writing n units of data
that are (to be) stored consecutively in external memory
takes Θ(Scan(n)) = Θ(n

B
) IOs. Sorting n units of data that

are consecutive in external memory takes Θ(Sort(n)) =
Θ(n

B
logM/B(n

B
)) IOs [2].

3. BISIMULATION PARTITIONING
State of the art internal memory bisimulation algorithms

are based on a process of refinement introduced in the work
of Paige and Tarjan (e.g., [13, 15, 24]). An initial partition
of the nodes is picked (for example: a partition based on
label equivalence). A step-by-step refinement of this initial
partition is calculated by picking a single block S of nodes
from the partition and stabilize all other blocks B with re-
spect to this group (by splitting B into a block of nodes that
have children in S and into a block of nodes that do not have
children in S).

These refinement steps require unstructured random ac-
cess to nodes and their children. In an external memory
setting, these accesses translate to high IO costs. Therefore,
it is not clear that state-of-the-art internal memory bisimu-
lation algorithms can be effectively adapted to an external-

memory setting. Hence, we have chosen to investigate an al-
ternative approach, inspired by the recent use of node rank
to accelerate internal memory refinement computations [13,
15].

3.1 Outline of our approach
Suppose each bisimilarity equivalence class is identified

by a unique number, the bisimilarity identifier. Let now the
bisimilarity family of a node be the set of bisimilarity iden-
tifiers of its children, and let the bisimilarity decision value
of a node be the combination of its rank, its label, and its
bisimilarity family. Then, by Definition 1, all nodes in the
same bisimilarity equivalence class have the same bisimilar-
ity decision value, and each bisimilarity equivalence class is
uniquely identified by the bisimilarity decision value of its
nodes.

The main idea behind our algorithmic approach is now to
match bisimilarity identifiers to nodes and their bisimilarity
decision values, by processing the nodes in order of increas-
ing rank. Thus, when processing the nodes of any rank r,
the bisimilarity identifiers of the children of these nodes are
already known and can be used to determine the bisimilar-
ity decision values of the nodes of rank r, which can then be
sorted in order to assign a unique identifier to each different
bisimilarity decision value.

To implement this approach, we use an algorithm in two
phases. In the first phase, we compute the ranks of all nodes
and we sort the nodes by rank and label; in the second
phase, we obtain the bisimilarity family for each node and
sort nodes of equal rank and label by their families. Below
we will explain how these phases can be implemented to run
in O(Sort(|N | + |E|)) IOs. After that, we will present an
enhanced version of the algorithm where, in the first phase,
nodes are sorted not only by rank and label, but also by a
recursively defined hash value. This enhancement leads to
a small increase in cost of the first phase, but may result in
a substantial reduction in the size of the sets of nodes that
need to be sorted in the second phase. Thus the enhanced
algorithm still takes O(Sort(|N |+|E|)) IOs, but with better
constant factors in practice for certain types of inputs.

3.2 Time-forward processing
Our bisimulation partitioning algorithm has two phases

in which information about nodes must be computed from
information about their children: in the first phase, we need
to compute a node’s rank (which is one plus the maximum
rank of its children); in the second phase, we need to as-
sign bisimilarity identifiers to nodes based on the bisimilar-
ity identifiers of their children. This would be relatively easy
if we could access the children of any node n when we pro-
cess n, but in an external-memory setting, this could cause
many IOs.

We can remove explicit access to the children of a node by
introducing a supporting data structure that can be used to
send information from children to parents. This technique
is called time-forward processing [8, 20]. Time-forward pro-
cessing can be used when nodes have unique ordered node
identifiers such that children have smaller identifiers than
their parents, and the nodes are stored in order of their
identifiers, each node being stored with its own identifier
and those of its parents. The supporting data structure
should support two operations: (i) inserting a message ad-
dressed to a given node, identified by its node identifier, and

Algorithm 1 Phase 1: sort by rank and label

Input: file of nodes N as records (id , label), sorted by id ;
file of edges E as records (parent , child), sorted by child ;
(id(n), id(m)) ∈ E implies id(m) < id(n).

Output: file of nodes N ′ as records (id , origId , rank , label),
sorted by id and, simultaneously, by (rank , label);
file of edges E′ as records (parent , child), sorted by child ;
rank(n) > rank(m) implies id(m) < id(n).

1: create empty file Ranks of records (id , rank , label)
2: create empty priority queue Q of records

(id , childsrank), ordered by id

3: for all (n, label) ∈ N , in order do
4: rank ← 0
5: while record at head of Q has id = n do
6: extract (n, childsrank) from Q
7: rank ← max(rank , childsrank + 1)
8: append (n, rank , label) to Ranks
9: while next edge from E has child = n do

10: read (parent , n) from E
11: insert (parent , rank) in Q

12: sort Ranks lexicographically by rank , label
13: copy Ranks to N ′ while assigning new node identifiers
14: copy E to E′ while updating node identifiers in E′

15: sort E′ by child

16: return (N ′, E′)

(ii) inspecting and removing all messages addressed to the
smallest node identifier that is currently present in the data
structure.

An algorithm that computes a value for each node depend-
ing on the values of its children can now be implemented
as follows. We compute values for all nodes in order of
their identifier, and whenever we compute a node’s value,
we insert messages with that value in the supporting data
structure, addressing these messages to each of the node’s
parents. Thus, before we process each node n, we can obtain
the values computed for its children by extracting all mes-
sages addressed to n from the data structure. Each node
removes all messages addressed to it from the data struc-
ture, nodes with lower identifiers are processed before nodes
with higher identifiers, and no messages are ever addressed
to nodes that have already been processed; thus, when we
want to extract the messages addressed to n, these messages
will be the messages with the smallest node identifier cur-
rently in the data structure and they can be extracted by
an operation of type (ii).

The supporting data structure can be implemented as a
priority queue. There are external-memory priority queues
that, amortized over their life-time, perform k operations of
type (i) and (ii) in Θ(Sort(k)) IOs [4].

3.3 The bisimulation partitioning algorithm
Assume the input to our problem consists of a list of nodes

N , storing a unique node identifier and a label for every
node, and a list of edges E, specified by the node identifiers
of their tails (parents) and their heads (children). The list
N is sorted by node identifier, and the list E is sorted by
head (child). Recall that the node identifiers are assumed

Algorithm 2 Details of line 13 and 14 of Algorithm 1

1: newId ← 0
2: create empty file R of records (origId ,newId)
3: create empty file N ′ of records

(newId , origId , rank , label)
4: for all (origId , rank , label) ∈ Ranks, in order do
5: newId ← newId + 1
6: append (origId ,newId) to R
7: append (newId , origId , rank , label) to N ′

8: sort R by origId
9: create empty file E′ of records (parent , child)

10: move read pointer of E to beginning
11: for all (origId ,newId) ∈ R, in order do
12: while next edge from E has child = origId do
13: read (parent , origId) from E
14: append (parent ,newId) to E′

15: sort E′ by parent
16: move pointers of R and E′ to beginning
17: for all (origId ,newId) ∈ R, in order do
18: while next edge from E has parent = origId do
19: read record (origId , child) from E′ and
20: overwrite with record (newId , child)

to be such that children always have smaller node identifiers
than their parents.

Our basic bisimulation partitioning algorithm is now as
follows. We use time-forward processing to compute the
rank of each node, and make a copy of the list of nodes in
which each node is annotated with its rank. Then we sort
the nodes lexicographically, with their ranks as primary keys
and their labels as secondary keys. We give each node a
new identifier which is simply the position of the node in
the resulting sorted list, and we replace the identifiers in E
accordingly, producing lists N ′ and E′. We sort these new
lists by the (new) node identifiers and by the (new) node
identifiers of the heads, respectively. This completes the
first phase of the algorithm. Pseudocode for this phase is
given in Algorithm 1.

Some additional implementation details on the last lines
of Algorithm 1 are in order. We can copy Ranks to N ′

while assigning new node identifiers, going through Ranks in
order. During this process we construct a list R of (old node
identifier, new node identifier)-pairs. To obtain a list E′ with
updated child node identifiers, we scan E and R in parallel
from beginning to end, copying the entries of E to E′ while
replacing the child node identifiers by the new identifiers as
read from R. To update the parent node identifiers in E′

we sort E′ on parent node identifier; we then scan E′ and R
in parallel from beginning to end while replacing the parent
node identifiers in E′ by the new identifiers as read from R.
Pseudocode is given in Algorithm 2.

The rank-label combinations of the nodes define a parti-
tioning of the graph. In the second phase of the algorithm,
we use time-forward processing to go through the blocks of
this partitioning one by one. Each rank-label combination
c is processed as follows. Let Nc be the set of nodes that
have rank-label combination c. For each node of Nc, we
extract the bisimilarity identifiers of its children from the
priority queue (assuming that they have been placed there)
and sort them, while removing doubles. Thus we get the
bisimilarity families for all nodes of Nc. Then we sort the

Algorithm 3 Phase 2: sort by bisimilarity equivalence class

Input: file of nodes N ′ as records (id , origId , rank , label), sorted by id and, simultaneously, by (rank , label);
file of edges E′ as records (parent , child), sorted by child ;
rank(n) > rank(m) implies id(m) < id(n).

Output: file of nodes B as records (origId , bisimId)

1: create empty file B of records (origId , bisimId)
2: create priority queue Q of records (id , childsBisimId), ordered by id
3: lastBisimId ← 0
4: create empty file Group of records (bisimFamily , origId , parents)

5: for all (n, origId , r, l) ∈ N ′, in order do
6: create an empty list bisimFamily
7: while record at head of Q has id = n do
8: extract (n, childsBisimId) from Q
9: append childsBisimId to bisimFamily

10: sort bisimFamily , removing doubles
11: read all parents of n from E′ and put them in a list parents
12: append (bisimFamily , origId , parents) to Group

13: if N ′ has no more records with rank = r, label = l then
14: sort Group by bisimFamily , while marking the first occurrence of each family
15: for all (bisimFamily , origId , parents) ∈ Group, in order do
16: if bisimFamily is marked then
17: lastBisimId ← lastBisimId + 1
18: append (origId , lastBisimId) to B
19: for all parentId ∈ parents do
20: insert (parentId , lastBisimId) in Q
21: erase Group

22: return B

nodes ofNc by bisimilarity family. Finally we go through the
nodes of Nc in order, assigning a unique bisimilarity identi-
fier bisimId(f) to each maximal group of nodes Nf within
Nc that have the same bisimilarity family f , and putting a
message bisimId(f) in the priority queue for all parents of
the nodes of Nf . Pseudocode for the second phase of the
algorithm is given in Algorithm 3.

Theorem 1. Given a labeled directed acyclic graph G =
〈N,E, l〉 with its nodes numbered in (reverse) topological or-
der, we can compute the bisimilarity equivalence classes of
G in O(Sort(|N |+ |E|)) IOs.

Proof. We use Algorithm 1, followed by Algorithm 3. As
observed in Section 2, bisimilar nodes must have the same
rank and the same label. As a result, any nodes that are
bisimilar to each other are processed in the same execution
of lines 14–21 of Algorithm 3. Based on the induction hy-
pothesis that nodes of rank r − 1 get the same bisimilarity
identifier if and only if they are bisimilar to each other, it is
now easy to show that in lines 14–21, nodes of rank r get the
same bisimilarity identifier if and only if they are bisimilar
to each other.

As for the efficiency of the algorithm, the first phase scans
and sorts files of at most |N | + |E| records, for a total of
O(Sort(|N | + |E|)) IOs. One record is inserted into and
extracted from the priority queue for each child-parent rela-
tion; thus the total number of IOs required by the priority
queue is O(Sort(|E|)).

The second phase is slightly more involved, as it sorts the
lists bisimFamily and the files Group. For each node, the
list bisimFamily contains one entry for each edge originating
from that node; thus the total size of the lists bisimFamily

is O(|E|) and they are sorted in O(Sort(|E|)) IOs in total.
For each node n, one record is added to the file Group: this
records contains an identifier for n and each of its children
and parents. Thus the amount of data inserted into Group
over the course of the entire algorithm is O(|N |+ |E|). On
line 14, the variable-size records in Group can be sorted and
marked with the string sorting algorithm by Arge et al. [5]
in O(Sort(|N | + |E|)) IOs. Thus, the complete algorithm
takes O(Sort(|N |+ |E|)) IOs.

3.4 Enhanced algorithm
To reduce the amount of sorting needed in the second

phase of the algorithm, we propose the following enhanced
algorithm. In the first phase, we not only compute a rank for
each node, but also a hash value, which is computed from
the node’s label and from the hash values of its children.
Thus, the first phase of the algorithm is as in Algorithm 4.

The second phase of the algorithm is exactly as before,
except that rank , label is replaced by rank , label , hash; in
particular, lines 14–21 are executed each time N ′ has no
more records with the same rank, label, and hash value as
the records seen so far.

By induction on increasing rank one can prove that bisim-
ilar nodes get the same hash value, and therefore, any pair
of nodes that are bisimilar to each other will still be pro-
cessed in the same execution of lines 14–21 in Algorithm 3.
Thus, the algorithm is still correct. Note that if the hash
value from a label and any given set of k hash values can be
computed in O(Sort(k)) IOs, the complete algorithm also
still runs in O(Sort(|N |+ |E|)) IOs in the worst case.

In many practical settings the priority queues in the first
phase may be small and fit in main memory. For example,

Algorithm 4 Phase 1 (enhanced with hash values)

Input: file of nodes N as records (id , label), sorted by id ;
file of edges E as records (parent , child), sorted by child ;
(id(n), id(m)) ∈ E implies id(m) < id(n).

Output: nodes N ′ as records (id , origId , rank , label , hash),
sorted by id and, simultaneously, by (rank , label , hash);
file of edges E′ as records (parent , child), sorted by child ;
rank(n) > rank(m) implies id(m) < id(n).

1: create empty file Ranks of records (id , rank , label , hash)
2: create empty priority queue Q of records

(id , childsRank , childsHash), ordered by id

3: for all (n, label) ∈ N , in order do
4: rank ← 0
5: initialize empty list childrensHashes
6: while record at head of Q has id = n do
7: extract (n, childsRank , childsHash) from Q
8: rank ← max(rank , childsRank + 1)
9: add childsHash to childrensHashes

10: sort childrensHashes, removing doubles
11: hash ← hash value from label and childrensHashes
12: append (n, rank , label , hash) to Ranks
13: while next edge from E has child = n do
14: read (parent , n) from E
15: insert (parent , rank) in Q

16: sort Ranks lexicographically by rank , label , hash
17: copy Ranks to N ′ while assigning new node identifiers
18: copy E to E′ while updating node identifiers in E′

19: sort E′ by child
20: return (N ′, E′)

if the input graph is a tree in reverse depth-first order, then
at any time during phase one, the queues will only contain
messages to/from the nodes on a single path between the
root and a leaf. As long as the children of a single node
always fit in memory, the hash values can be computed in
memory as well. Thus, the cost of computing the hash values
in the first phase is small, and in practice, each hash value
will be read or written at most eight times when writing,
sorting, and reading Ranks and N ′. In return, the grouping
by rank, label, and hash value induces a much finer parti-
tioning of G than the grouping by rank and label only. As a
result, the sorting on line 14 of the second phase will be less
likely to require the use of external memory. Note that each
node’s record in the Group file contains one number for the
node’s original identifier, plus one number for each neigh-
bour of the node (a bisimilarity identifier for every child,
and a node identifier for every parent). Therefore, even if
on average, nodes have only two neighbours, a record in the
group file has an average size of three numbers. Since sorting
out-of-memory would take at least two read passes and two
write passes, this would amount to the transfer of 3 · 4 = 12
numbers per node to or from disk. Thus, even in this setting
with few edges, the optimization with hashing may already
lead to IO-savings in the second phase of twelve numbers
per node.

3.5 Implementation using STXXL
We have implemented the enhanced bisimulation parti-

tioning algorithm of Section 3.4 using the building blocks
available in the STXXL library, a mature open-source C++

library which provides basic external memory data struc-
tures and algorithms [10].1 Since STXXL does not include
algorithms to sort sets of variable-length records in external
memory, we used the following adaptation of Algorithm 3.

Instead of storing, for each node n, a record of the form
(bisimFamily , origId , parents) in the file Group, we store
the following fixed-size records: (i) one record of the type
(secondHash, origId), where secondHash is a secondary hash
value computed from the bisimilarity family of n; (ii) for
each child of n, a record of the type (secondHash, origId ,
childsBisimId) (these records collectively store the bisimi-
larity family of n); (iii) for each parent of n, a record of
the type (secondHash, origId , parentId) (these records col-
lectively store the parents of n). The secondary hash val-
ues computed from the bisimilarity families are such that
bisimilarity families of different size always have different
secondary hash values.

In line 14, we sort the above mentioned records lexico-
graphically, thus obtaining a list of nodes with their bisimi-
larity families and parents, ordered by secondary hash value.
Although unlikely, collisions on the secondary hash values
may occur: nodes with equivalent secondary hash values
(which appear consecutively in the sorted list) may have
different bisimilarity families. Therefore we have to be a
bit more careful when assigning bisimilarity identifiers in
line 16–20: when processing nodes that have the same sec-
ondary hash value, we record their bisimilarity families with
their bisimilarity identifiers in a dictionary; before assigning
a new identifier to a particular bisimilarity family, we first
check the dictionary to see if an identifier for this bisimi-
larity family had already been assigned. Considering that
in practice (and, under the assumption of perfect hashing,
also in theory) the dictionary is unlikely to ever be large, we
used a simple sequential file implementation for this dictio-
nary. Bisimilarity families are only stored in the dictionary
as long as nodes with the same secondary hash value are
being processed; the dictionary is always erased before pro-
ceeding to nodes with another rank, label, hash value, or
secondary hash value.

A full analysis of the IO complexity of this approach can
be found in [16].

4. INDEXING XML DOCUMENTS
XML documents are widely used to exchange and store

tree-structured data [1]. In this section we investigate spe-
cializations of the general algorithm from the previous sec-
tion to efficiently calculate in external memory variations
of bisimulation which have been proposed in the design of
indexing data structures for XML and semi-structured data-
bases. We shall discuss two well-known variations, namely
the 1-index [21] and the A(k)-index [19]. We also briefly
discuss how our approach can be specialized to efficiently
compute the well known F&B-index [1].

In Figure 2 we have given an example of a simple XML
document tree and indices built from this tree. In the index
figures, nodes represent partition blocks, and there exists an
edge from block A to block B if (and only if) there exists an
edge in the original document from a node in A to a node
in B.

1For more information we refer to the STXXL project page
at http://stxxl.sourceforge.net/.

a(0)

a(1) a(2)

b(3) c(4) b(5) c(6) a(7)

b(8) c(9)

(a) XML Document tree

a(0)

a(1,2)

b(3,5) c(4,6) a(7)

b(8) c(9)

(b) 1-index

a(0)

a(1) a(2)

b(3) c(4) b(5) c(6) a(7)

b(8) c(9)

(c) F&B-index

a(0,1,2,7)

b(3,5,8) c(4,6,9)

(d) A(0)-index

a(0)

a(1,2,7)

b(3,5,8) c(4,6,9)

(e) A(1)-index

a(0)

a(1,2)

b(3,5,8) c(4,6,9)

a(7)

(f) A(2)-index

a(0)

a(1,2)

b(3,5) c(4,6) a(7)

b(8) c(9)

(g) A(3)-index

Figure 2: An XML document tree and five different index types; namely the 1-index, the F&B-index, and the A(k)-index (for
0 ≤ k ≤ 3). We have annotated each node in the XML document tree with a unique identifier. This identifier is used in the
indices to indicate the nodes represented by each index node.

4.1 The 1-index
The 1-index utilizes “backward” bisimulation for relating

nodes with the same structure with respect to path-queries
[21]. Backward bisimulation is equivalent to normal bisimu-
lation on a graph wherein all edges are reversed in direction.
Figure 2(b) illustrates the 1-index of our example XML doc-
ument.

Backward bisimulation combined with the nested tree-
structure of XML documents gives us several properties that
we can utilize to optimize bisimulation partitioning. Recall
that the basic algorithm from Section 3.3 consists of two
phases: in the first phase nodes are sorted by rank and la-
bel; in the second phase nodes of the same rank and label
are sorted by bisimilarity family. Alternatively we could take
the following approach: in the first phase we sort by rank
only; in the second phase we sort nodes of the same rank
by label and bisimilarity family. Obviously, this would not
affect the correctness and the asymptotic I/O-complexity of
the algorithm. However, in the case of 1-indexes for XML-
documents it brings the following advantage: we can avoid
the use of a priority queue in the first phase, and we can
avoid use of several sorting passes to assign identifiers to
nodes. We achieve this as follows.

Instead of assigning identifiers to nodes by first sorting the
nodes by rank and then using the positions in the sorted list
as identifiers, we can use composite node identifiers of the
form (rank , idOnLevel), where rank is the backward rank
of the node (that is, the node’s depth in the tree), and
idOnLevel is a unique identifier with respect to all nodes
with backward rank rank . We can now use the structure of
XML documents to compute these identifiers efficiently—in
particular we will exploit the fact that an XML document
essentially stores a so-called Euler tour [20] of the tree, in
order.

Our algorithm will traverse the tree while maintaining a

counter depth that holds the depth of the current position
in the tree, and an array count , in which the i-th number
(denoted count [i]) holds the number of nodes at depth i
encountered so far. Initially, depth = 0 and the array count
is empty; whenever we try to read an element of count that
does not exist yet, this element will be created and initialized
to zero.

Now, when we read a start-tag representing a node n
during the processing of an XML document, this node is
assigned backward rank rank = depth and idOnLevel =
count [rank]; we increment both count [rank] and depth by
one, and we construct an edge to n from its parent: this
must be the last node encountered on the previous level,
with composite identifier (rank − 1, count [rank − 1] − 1).
When we read an end-tag we simply decrement depth by
one. After reading the complete tree, we simply sort the
nodes by composite identifier, and the edges by the compos-
ite identifiers of the parents. Pseudocode for the complete
first phase of the algorithm is given in Algorithm 5.

The second phase of the algorithm is now simple to im-
plement. Note that we are computing backward bisimilarity
equivalence classes, and therefore parents and children have
switched roles. Thus, the bisimilarity family of a node is
simply the bisimilarity identifier of the parent of a node,
and no implementations of string sorting or secondary hash
functions and dictionaries (as in Section 3.5) are needed.
Pseudocode is given in Algorithm 6.

Theorem 2. Given an XML-document of N nodes, we
can compute its 1-index in O(Sort(|N |)) IOs.

Proof. We use Algorithm 5, followed by Algorithm 6.
The correctness of the algorithm follows from the same ar-
guments as for Algorithm 1 and Algorithm 3 in Theorem 1.

As for the IO-complexity, observe that the accesses to the
file count follow a very well-structured pattern: effectively

Algorithm 5 XML 1-index, phase 1: sort by depth

Input: XML document D.
Output: file N ′ of XML nodes as records

(rank , idOnLevel , origId , label),
sorted by (rank , idOnLevel);
file E′ of edges as records
(parentRank , parentIdOnLevel , childIdOnLevel),
sorted by (parentRank , parentIdOnLevel);

1: create empty file N ′

2: create empty file E′

3: create empty array of counters count
4: depth ← 0

5: for all tags tag of D, in order do
6: if tag is a start tag then
7: if count [depth] does not exist then
8: add an entry count [depth] = 0 to count
9: if depth 6= 0 then

10: append
(depth − 1, count [depth − 1]− 1, count [depth])
to E′

11: determine node identifier origId and label label
12: append (depth, count [depth], origId , label) to N ′

13: increment count [depth]
14: increment depth
15: else if tag is an end tag then
16: decrement depth

17: sort N ′ by (rank , idOnLevel)
18: sort E′ by (parentRank , parentIdOnLevel)

19: return (N ′, E′)

we move ahead in the file by one step whenever we encounter
a start tag, and we move back in the file by one step when-
ever we encounter an end tag. Thus, if we keep the two most
recently accessed blocks of the file in memory, at least B tags
must be read between successive IOs on the count file. Oth-
erwise, the algorithm runs in O(Sort(|N |+ |E|) IOs by the
same arguments as for Theorem 1; since |E| = |N | − 1, this
simplifies to O(Sort(|N |)) IOs.

4.1.1 The F&B-index
The 1-index summarizes the structure of graphs by only

looking in one direction, from parent to child. The F&B-
index groups nodes based on a summary of their structure
with respect to both ancestors and descendants [1, 17]. Fig-
ure 2(c) illustrates the F&B-index of our example XML doc-
ument.

For trees, Grimsmo et al. have shown that the F&B-
index partitioning can be obtained by first computing for-
ward bisimulation and then refining the obtained partition
by computing backward bisimulation, i.e., by applying the
algorithm from Section 3 twice (once with edges reversed)
[15]. It is possible to significantly reduce the cost of this
computation, by a straightforward adaptation of the algo-
rithm from Section 4.1 for the backwards bisimulation step
[16].

4.2 The A(k)-index
The A(k)-index utilizes backward node k-bisimulation, a

localized variant of backward node bisimulation. The A(k)-

index groups nodes n based on the structure of ancestor
nodes at most k steps away from n.

Definition 3. LetG = 〈N,E, l〉 be a graph, m,n ∈ N , and
k ≥ 0. We say m and n are backward k-bisimilar, denoted
n ≈k m, if and only if k = 0 and l(n) = l(m), or k > 0 and:

1. the nodes n and m are backward (k−1)-bisimilar, that
is, n ≈k−1 m;

2. for each n′ ∈ parents(n), there is an m′ ∈ parents(m)
with n′ ≈k−1 m′; and,

3. for each m′ ∈ parents(m), there is an n′ ∈ parents(n)
with n′ ≈k−1 m′.

Figures 2(d)-(g) illustrate the A(0)-, A(1)-, A(2)-, and A(3)-
index, resp., of our example XML document.

The A(k)-index seems similar to the 1-index. However,
there is a critical difference between the two. Whereas all
backward bisimilar nodes have the same rank, this does
not necessarily hold for backward k-bisimilar nodes. We
thus cannot use backward rank to localize the partitioning
computations. We can, however, express backward node k-
bisimilarity on trees in another way; namely, in terms of
k-traces.

Definition 4. Let G = 〈N,E, l〉 be a tree, r ∈ N be the
root of G, n ∈ N , and L(r, n) = 〈l(r), . . . , l(n)〉 be the se-
quence of labels of the nodes on the path from r to n in E.
For k ≥ 0, the k-trace of L(r, n), denoted T k

n , is the sequence
containing the last k elements in L(r, n). If k > |L(r, n)|,
the length of L(r, n), then the k-trace is constructed by pre-
fixing L(r, n) with k−|L(r, n)| occurrences of some reserved
label λ not in the range of l.

The k-traces, which are easily represented by fixed-size
values, are used for identifying backward k-bisimilar equiv-
alent nodes, as follows.

Proposition 1. Let G = 〈N,E, l〉 be a tree, m,n ∈ N ,
and k ≥ 0. Then n ≈k m if and only if T k+1

n = T k+1
m .

While processing an XML document, we can use a stack
to store the labels of all parents of the current node n by
pushing the label of a node onto the stack when we encounter
a start-tag and popping the top of the stack when we en-
counter an end-tag. By taking the topmost k + 1 elements
we get T k+1

n , the (k + 1)-trace of n. This leads to a simple
A(k)-index construction algorithm for XML documents, a
sketch of which is presented in Algorithm 7.

Theorem 3. Given an XML-document of N nodes, we
can compute its A(k)-index in O(kSort(|N |)) IOs.

5. EMPIRICAL ANALYSIS
To investigate the empirical behavior of our algorithms,

we have performed four separate experiments. All experi-
ments were performed on a standard laptop with an Intel
Core i5-560M processor and 4GB of main memory. We have
used the internal hard disk drive of this system for sorting
and for storing temporary data structures such as priority
queues. We have used the open source C++ library STXXL
to perform all disk IO, (except for reading the initial input

Algorithm 6 XML 1-index, phase 2: sort by backward bisimilarity equivalence class

Input: file of XML nodes N ′ as records (rank , idOnLevel , origId , label), sorted lexicographically by (rank , idOnLevel);
file of edges E′ as records (parentRank , parentIdOnLevel , childIdOnLevel),
sorted lexicographically by (parentRank , parentIdOnLevel);

Output: file of XML nodes B as records (origId , bisimId)

1: create empty file B of records (origId , bisimId)
2: create priority queue Q of records (rank , idOnLevel , parentBisimId), ordered by (rank , idOnLevel)
3: insert (−1, 0, 0) in Q (sentinel for root)
4: lastBisimId ← 0
5: create empty file Group of records (label , parentBisimId , origId , children)

6: for all (r, idOnLevel , origId , label) ∈ N ′, in order do
7: extract (r, idOnLevel , parentBisimId) from Q
8: create an empty list children
9: while next record of E′ has parentRank = r and parentIdOnLevel = idOnLevel do

10: read (parentRank , parentIdOnLevel , childIdOnLevel) from E
11: append childIdOnLevel to children
12: append (label , parentBisimId , origId , children) to Group

13: if N ′ has no more records with rank = r then
14: sort Group lexicographically by (label , parentBisimId)
15: for all (label , parentBisimId , origId , children) ∈ Group, in order do
16: if label and parentBisimId are not the same as in previous record of Group then
17: lastBisimId ← lastBisimId + 1
18: append (origId , lastBisimId) to B
19: for all childIdOnLevel ∈ children do
20: insert (r + 1, childIdOnLevel , lastBisimId) in Q
21: erase Group

22: return B

Algorithm 7 A(k)-index construction for XML documents

Input: XML document D.
Output: file of XML nodes B as records (origId , trace)

1: create empty file B of records (origId , trace)
2: create empty stack S
3: push k dummy labels λ onto S

4: for all tags tag of D, in order do
5: if tag is a start tag then
6: determine node identifier origId and label label
7: push label onto S
8: append (origId , top k + 1 elements of S) to B
9: else if tag is an end tag then

10: pop one label from S

11: Sort B by trace
12: return B

and writing the final output). The default configuration for
STXXL, which we used, is to use direct IO, i.e., to com-
pletely bypass file system buffering. Further details can be
found in [16].2

Experiment 1. In this experiment we measured the per-
formance of the general bisimulation algorithm from Sec-
tion 3.5 as a function of the number of nodes in the input
graph. We also considered the difference between starting

2Open-source code of the full C++ implementation of the
algorithms and supporting tooling used in our analysis can
be found at http://jhellings.nl/projects/exbisim/.

with a good initial partition (by Algorithm 4, based on rank,
label, and hash value) and starting with a poor initial par-
tition (by Algorithm 1, based on rank and label only), in
order to measure the impact of a good initial partition on
performance.

For this experiment, random graphs having between 100 ·
106 and 1000 · 106 nodes were created using the generator
described in Appendix A. Every graph had an average of
three to four edges per node. The file size of the input
graphs ranged between 2.1GB and 21.2GB. The number of
bisimulation partition blocks in the output ranged from 70 ·
106 for the smallest graph to 708 · 106 for the largest graph.
For the largest input we have measured a total of 35919 reads
from disk; 35091 writes to disk. Thereby a total 70.1GB was
read and 68.5GB was written. These measurements only
include temporary file usage (priority queues and sorting);
not the reading of input and writing of output. In Figure 3
we have plotted the results for this experiment.

Experiment 2. In this experiment we measured the perfor-
mance of the general bisimulation algorithm from Section 3.5
as a function of the number of edges in the input graph. To
this end, we created graphs having 5 ·104 nodes and between
0 and 1249 · 106 edges, using the generator as described in
Appendix A. In Figure 4 we have plotted the results for this
experiment.

Experiment 3. In this experiment we measured the per-
formance the general bisimulation algorithm of Section 3.5
on a single graph as a function of the amount of available
memory (per data structure). For this experiment we fixed

0 0.2 0.4 0.6 0.8 1

·109

0

1

2

3

4
·10−6

Nodes

R
u
n
n
in
g
ti
m
e
p
er

si
ze

[s
]

0 0.2 0.4 0.6 0.8 1

·109

0

0.2

0.4

0.6

0.8

1

·10−4

Nodes

IO
s
p
er

si
ze

External memory bisimulation partitioningrl

External memory bisimulation partitioningss

Figure 3: Performance of the bisimulation algorithm from
Section 3 (Experiment 1). On the left, running time per
node and edge is plotted against the number of nodes in the
input. On the right, the number of IOs performed per node
and edge is plotted against the number of nodes in the input.
The subscript rl indicates an initial partition based on rank
and label, the subscript ss indicates an initial partition based
on rank, label, and hash value.

0 0.20.40.60.8 1 1.2

·109

0

0.5

1

1.5

2

2.5
·10−6

Edges

R
u
n
n
in
g
ti
m
e
p
er

si
ze

[s
]

0 0.20.40.60.8 1 1.2

·109

0

0.2

0.4

0.6

0.8
·10−4

Edges

IO
s
p
er

si
ze

External memory bisimulation partitioning

Figure 4: Performance of the bisimulation algorithm from
Section 3 (Experiment 2). On the left, running time per
node and edge is plotted against the number of edges in the
input. On the right, the number of IOs performed per node
and edge is plotted against the number of edges in the input.

a single graph with 108 nodes and 3.3 · 108 edges, generated
as described in Appendix A. On this graph we performed
external memory bisimulation partitioning, using versions of
the algorithm from Section 3 constrained to a limited mem-
ory usage. We used values between 12 MB and 1.5 GB for
the amount of memory the algorithm is allowed to use. In
Figure 5 we have plotted the results for this experiment.

Experiment 4. In this experiment we compared the per-
formance of, on one hand, the general DAG bisimulation
algorithm from Section 3.5, and, on the other hand, the spe-
cialized algorithm from Section 4.1 for 1-index construction
on XML documents. The performance of both algorithms
is measured as a function of the size of the input graph.
For this experiment we created XML documents using the
xmlgen program provided by the XML Benchmark Project.3

3We have used version 0.92 of xmlgen, see http://www.xml-
benchmark.org/ for details.

24 25 26 27 28 29210211
10−6

10−5

10−4

Memory size [MB]

R
u
n
n
in
g
ti
m
e
p
er

si
ze

[s
]

24 25 26 27 28 29210211

10−4

10−3

Memory size [MB]

IO
s
p
er

si
ze

External memory bisimulation partitioning

Figure 5: Impact of available internal memory on the per-
formance of the bisimulation algorithm from Section 3 (Ex-
periment 3). On the left, running time per node and edge
is plotted against the amount of available memory. On the
right, the number of IOs performed per node and edge is
plotted against the amount of available memory. Note that
the amount of available memory excludes stack space used
by local variables and the memory used for buffers (256MB
in total).

0 0.1 0.2 0.3 0.4 0.5

·103

0

2

4

6

8

·10−6

Scaling factor

R
u
n
n
in
g
ti
m
e
p
er

si
ze

[s
]

0 0.1 0.2 0.3 0.4 0.5

·103

0
0.2
0.4
0.6
0.8

1
1.2
1.4
·10−4

Scaling factor

IO
s
p
er

si
ze

External memory bisimulation partitioning

External memory 1-index construction

Figure 6: Comparing the performance of the DAG bisimu-
lation algorithm of Section 3 and the 1-index algorithm of
Section 4.1 (Experiment 4). On the left, running time per
node is plotted as a function of the scaling factor. On the
right, the number of IOs performed per node is plotted as a
function of the scaling factor.

For the generation of XML documents we have used scaling
factors between 50 and 500, resulting in documents with
sizes between 5.6GB (108 nodes) and 55.8GB (109 nodes).
In Figure 6 we have plotted the results for this experiment.

Analysis of results. The experiments all show that under
all tested conditions, the general algorithm from Section 3
is and stays IO-efficient, even when available memory is ar-
tificially limited or when the number of nodes and edges is
very high. We also see from Experiment 4 that specializa-
tions of our algorithm can outperform the general algorithm
with a good margin. In particular, we were able to pro-
cess an 55.8 GB XML document of 109 nodes, generated by
software from the XMark XML benchmark project, in 104
minutes on a standard laptop with a standard hard disk.

Experiment 1 further shows that a good initial partition

(by rank, label and hash value) improves performance over
the less-refined initial partitions (by rank and label only). A
deeper look into the results of this experiment show that this
performance improvement is due to a high increase in the
number of partition blocks in the input for the second phase.
This is as expected and does partly account for the improve-
ment of performance. The results also show a reduction of
the collisions on the secondary hash values that are com-
puted from bisimilarity families (as explained in Section 3.5)
— in fact, collisions were completely eliminated [16].

Experiment 3 shows that the algorithm does benefit from
having more memory at its disposal. However, the impact
of an increase in available memory becomes less significant
for larger amounts of available memory.

From the results of the experiments and from the structure
of the algorithm we do not expect that certain types of DAGs
will have a much better performance than others. An in-
depth look into the running time performance shows that it
is mainly dominated by the first phase; and within this phase
the majority of time is spend on sorting and renumbering
the entire graph (last lines of Algorithm 1 and Algorithm 4).
This sorting and renumbering is unaffected by any particular
graph structures.

6. CONCLUDING REMARKS
In this paper we have developed the first IO-efficient bisim-

ulation partitioning algorithm for DAGs. We also devel-
oped specializations of our general algorithm to compute
well-known variants of bisimulation for disk-resident XML
data. We have complemented our theoretical analysis of
these algorithms with an empirical investigation which es-
tablished their practicality on graphs having billions of nodes
and edges.

The proposed algorithms are simple enough for practi-
cal implementation and use, for example in the design and
implementation of scalable indexing data structures to facil-
itate efficient search and query answering in a wide variety
of real-world applications of DAG-structured data, as dis-
cussed in Section 1.

Future work. The conceptual and practical results devel-
oped here pave the way for a variety of further investigations.
We conclude the paper with a brief discussion of some of
these.

Generalizing bisimulation partitioning. DAGs are ade-
quate for representing XML data and other practical types
of hierarchical data. However, for some applications, in-
cluding querying RDF graphs and general graph databases,
cycles in the data are common. Looking at the current state
of general external-memory graph algorithms [20], it is not
clear that solutions for IO-efficient bisimulation partition-
ing on cyclic graphs are likely to exist. One can however
focus research on heuristic approaches to achieve accept-
able performance in many cases, as is common for many
external-memory algorithms (e.g., [3]). Extending our algo-
rithms with such heuristics to handle cycles is an interesting
direction for further study.

Partition maintenance. One can expect that a practical
data set might be subject to modifications over time. Upon
modification, it becomes necessary to update any bisimula-
tion partition maintained on the data. Of course, this main-
tenance can be performed by throwing out the old partition
and computing a new one from scratch. It is easy to show

that, in the worst-case, partition maintenance can indeed
be as expensive as calculating a new partition from scratch.
In many practical cases, however, such a drastic approach
is avoidable. For example, approximations of bisimulation
which are cheaper to maintain may be acceptable. Internal-
memory approaches to incremental partition maintenance in
this spirit have been proposed, e.g., [11, 18, 26]. Studying
such practical maintenance schemes for disk-resident data is
another interesting direction for future research.

Practical output formatting. In the empirical validation of
our algorithms, we have not considered any particular out-
put format. An interesting research problem is to consider
adapting our algorithms such that their output is usefully
structured for some intended applications. For example, on
XML documents one can explore the combination of our al-
gorithms with the on-disk data structure studied by Wang
et al. [29].

7. REFERENCES
[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the

Web: from relations to semistructured data and XML.
Morgan Kaufmann, San Francisco, 2000.

[2] A. Aggarwal and J. S. Vitter. The Input/Output
complexity of sorting and related problems.
Communications of the ACM, 31(9):1116–1127, 1988.

[3] D. Ajwani, A. Cosgaya-Lozano, and N. Zeh.
Engineering a topological sorting algorithm for
massive graphs. Proc. Algorithm Engineering and
Experimentation (ALENEX), 2011.

[4] L. Arge. The buffer tree: A technique for designing
batched external data structures. Algorithmica,
37(1):1–24, 2003.

[5] L. Arge, P. Ferragina, R. Grossi, and J. S. Vitter. On
sorting strings in external memory (extended
abstract). In Proc. ACM Symp. on Theory of
Computation (STOC), pages 540–548, 1997.

[6] M. Ben-Ari, T. Milo, and E. Verbin. Querying
DAG-shaped execution traces through views. In
WebDB, Providence, RI, USA, 2009.

[7] P. Buneman, M. Grohe, and C. Koch. Path queries on
compressed XML. In VLDB, pages 141–152, Berlin,
2003.

[8] Y.-J. Chiang, M. T. Goodrich, E. F. Grove,
R. Tamassia, D. E. Vengroff, and J. S. Vitter.
External-memory graph algorithms. In Proc. Symp. on
Discrete Algorithms (SODA), pages 139–149, 1995.

[9] V. Christophides, G. Karvounarakis, D. Plexousakis,
M. Scholl, and S. Tourtounis. Optimizing taxonomic
semantic web queries using labeling schemes. J. Web
Sem., 1(2):207–228, 2004.

[10] R. Dementiev, L. Kettner, and P. Sanders. STXXL:
standard template library for XXL data sets. Software:
Practice and Experience, 38(6):589–637, 2008.

[11] J. Deng, B. Choi, J. Xu, and S. S. Bhowmick.
Optimizing incremental maintenance of minimal
bisimulation of cyclic graphs. In DASFAA, pages
543–557, Hong Kong, 2011.

[12] D. Deutch and T. Milo. A quest for beauty and wealth
(or, business processes for database researchers). In
Proc. ACM Symp. on Principles of Database Systems
(PODS), pages 1–12, Athens, Greece, 2011.

[13] A. Dovier, C. Piazza, and A. Policriti. An efficient
algorithm for computing bisimulation equivalence.
Theor. Comput. Sci., 311(1-3):221–256, 2004.

[14] G. H. L. Fletcher, D. Van Gucht, Y. Wu, M. Gyssens,
S. Brenes, and J. Paredaens. A methodology for
coupling fragments of XPath with structural indexes
for XML documents. Inf. Syst., 34(7):657–670, 2009.

[15] N. Grimsmo, T. A. Bjørklund, and M. L. Hetland.
Linear computation of the maximum simultaneous
forward and backward bisimulation for node-labeled
trees. In XSym, pages 18–32, Singapore, 2010.

[16] J. Hellings. Bisimulation partitioning and partition
maintenance on very large directed acyclic graphs.
Master’s thesis, Eindhoven Univ. of Technology, 2011.

[17] R. Kaushik, P. Bohannon, J. F. Naughton, and H. F.
Korth. Covering indexes for branching path queries. In
Proc. SIGMOD International Conference on
Management of Data, pages 133–144, Madison,
Wisconsin, 2002.

[18] R. Kaushik, P. Bohannon, J. F. Naughton, and
P. Shenoy. Updates for structure indexes. In VLDB,
pages 239–250, Hong Kong, 2002.

[19] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes.
Exploiting local similarity for indexing paths in
graph-structured data. In Proc. IEEE Int. Conf. on
Data Engineering (ICDE), pages 129–140, 2002.

[20] U. Meyer, P. Sanders, and J. Sibeyn, editors.
Algorithms for memory hierarchies: advanced lectures.
Springer-Verlag, Berlin, Heidelberg, 2003.

[21] T. Milo and D. Suciu. Index structures for path
expressions. In Proc. Int. Conf. on Database Theory
(ICDT), pages 277–295, Jerusalem, 1999.

[22] L. Moreau. The foundations for provenance on the
web. Foundations and Trends in Web Science,
2(2-3):99–241, 2010.

[23] K.-K. Muniswamy-Reddy and M. Seltzer. Provenance
as first class cloud data. SIGOPS Oper. Syst. Rev.,
43:11–16, 2010.

[24] R. Paige and R. E. Tarjan. Three partition refinement
algorithms. SIAM J. Comput., 16(6):973–989, 1987.

[25] G. Palla, I. J. Farkas, P. Pollner, I. Derényi, and
T. Vicsek. Fundamental statistical features and
self-similar properties of tagged networks. New
Journal of Physics, 10(12):123026, 2008.

[26] D. Saha. An incremental bisimulation algorithm. In
Proc. Found. of Software Technology and Theoretical
Computer Science (FSTTCS), pages 204–215, New
Delhi, India, 2007.

[27] D. Sangiorgi. On the origins of bisimulation and
coinduction. ACM Trans. Program. Lang. Syst.,
31:15:1–15:41, 2009.

[28] B. Smith et al. The OBO Foundry: coordinated
evolution of ontologies to support biomedical data
integration. Nature Biotechnology, 25:1251–1255, 2007.

[29] W. Wang, H. Jiang, H. Wang, X. Lin, H. Lu, and
J. Li. Efficient processing of XML path queries using
the disk-based F&B index. In VLDB, pages 145–156,
Trondheim, Norway, 2005.

[30] J. Yu and R. Buyya. A taxonomy of workflow
management systems for grid computing. Journal of
Grid Computing, 3:171–200, 2005.

APPENDIX
A. GENERATING BENCHMARK DATA

Developed as part of our open-source experimental frame-
work [16], the gen program is a benchmark graph generator.
The program can be configured to create random DAGs,
trees, chains and transitive-closure chains, with control of
basic features such as node label assignment and graph size.
We used gen to generate the input to Experiments 1–3, dis-
cussed in Section 5. The generator does not try to represent
any particular class of graph structures, instead focusing on
the worst-case scenario of random structure, to stress-test
our algorithms.

The program uses a direct approach for generating the
input for Experiment 1. First, gen creates n nodes. To each
node v, gen assigns a label from a limited set of labels that
depends on n. Then gen selects children to be connected to
v by repeatedly flipping a coin that comes up heads with a
certain probability p, that is given as a parameter to gen.
Whenever the coin comes up heads, a new child for v is
selected from the nodes that were generated before v; if the
new child was already a child of v, it is ignored. As soon
as the coin comes up tails, our program gen stops selecting
children for v, and moves on to generating the next node.

The program uses a slightly different approach for gen-
erating the random graphs used in Experiment 2. Again,
gen creates n nodes and assigns labels in the way described
above. To create edges, gen considers every pair of nodes
u, v such that u was generated before v, and creates an edge
from u to v with probability p.

For Experiment 3 we use the same approach as for Exper-
iment 1.

