
In- and output programming interface

Jelle Hellings

June 15, 2011

1 Introduction

This document describes the in- and output interfaces provided by these pro-
grams.

2 Program interfaces

Almost all programs developed for this project read input from some file and
write the results to another file. For this input and output we have used various
binary data formats. We shall describe these formats in this section. Every
used format starts with a unique format identifier. The following identifiers are
currently in use: tree, dag, dagfp, and dagfps (see exbisim/header/common/

format.hpp). The dagfp format provides a L representation of graphs; the
dagfps format provides a LS representation of graphs.

In the current implementation all numbers (represented by N in the format
grammars) are limited to 32-bit unsigned integers. This limits the possible
values to the range [0, 232 − 1); this also limits the number of nodes in a tree
or in a graph. All integers are stored in machine-dependent order (little endian
for the common Intel x86 architecture).

2.1 The format tree

The tree format is described by the following grammar:
Tree ←− tree Node

Node ←− o Label Node* c

Label ←− N
Trees in tree format start with the format identifier tree. The content

of a tree consists of a single root node. A node consists of an open tag o

and close tag c; a node has a single label. Node open o and close o tags are
represented by a byte in input; with ASCII values ‘o’ (111) and ‘c’ (99) (see
exbisim/header/common/treetag.hpp).

1



2.2 The format dag

The dag format is described by the following grammar:
Dag ←− dag NumNodes Node*

Node ←− Label NumChildren ChildNodeIdentifier*
NumNodes ←− N

Label ←− N
NumChildren ←− N

ChildNodeIdentifier ←− N
Directed acyclic graphs in dag format start with the format identifier dag.

The content of a directed acyclic graph consists of the number of nodes n fol-
lowed by exactly n nodes. Each node consists of a label, the number of child
nodes c followed by exactly c child node identifiers. The following interpretation
is placed on this structure:

1. The i-th node in the list has identifier i− 1 (thus we have node identifiers
in the range [0,NumNodes)).

2. All children of node n with identifier i must have a smaller node identi-
fier then node n; this assures that the directed acyclic graph is reverse-
topological ordered.

2.3 The format dagfp

The dagfp format provides a L representation of graphs. The dagfp format is
described by the following grammar:

DagFP ←− dagfp NumNodes Node*
Node ←− Label NumParents ParentNodeIdentifier*

NumNodes ←− N
Label ←− N

NumParents ←− N
ParentNodeIdentifier ←− N

Directed acyclic graphs in dagfp format are similar to directed acyclic graphs
in dag format. The main difference is that in directed acyclic graphs in dagfp

format each node has an edge adjacency list pointing to all parent nodes instead
of an edge adjacency lists pointing to all child nodes.

Directed acyclic graphs in dagfp format start with the format identifier
dagfp. The content of such a directed acyclic graph consists of the number of
nodes n followed by exactly n nodes. Each node consists of a label, the number
of parent nodes p followed by exactly p parent node identifiers. The following
interpretation is placed on this structure:

1. The i-th node in the list has identifier i− 1 (thus we have node identifiers
in the range [0,NumNodes)).

2. All parents of node n with identifier i must have larger node identifiers then
node n; this assures that the directed acyclic graph is reverse-topological
ordered.

2



2.4 The format dagfps

The dagfps format provides a LS representation of graphs. The dagfps format
is described by the following grammar:

DagFPS ←− dagfps NumPartitionBlocks PartitionBlock*
PartitionBlock ←− NumNodes Rank Label Node*

Node ←− NumParents ParentNodeIdentifier*
NumPartitionBlocks ←− N

NumNodes ←− N
Rank ←− N
Label ←− N

NumParents ←− N
ParentNodeIdentifier ←− N

Directed acyclic graphs in dagfps format are similar to directed acyclic
graphs in dag or dagfp format. The main difference with the other directed
acyclic graph formats is that the dagfps format places more constraints on the
ordering of nodes: nodes are grouped in partition blocks wherein every node
has at least the same rank and label. These partition blocks of rank r and label
l are lexicographically ordered on (r, l).

Directed acyclic graphs in dagfps format start with the format identifier
dagfps. The content of such a directed acyclic graph consists of the number of
partition blocks b followed by exactly b partition blocks. Each partition blocks
consists of a number of nodes n placed in the group, a rank and a label; followed
by exactly n nodes. Each node consist of a number of parents p followed by
exactly p parent node identifiers. The following interpretation is placed on this
structure:

1. The i-th node in the list has identifier i− 1.

2. All parents of node n with identifier i must have larger node identifiers then
node n; this assures that the directed acyclic graph is reverse-topological
ordered.

3. The rank of a node is equal to the length of the longest path to a leaf node
in the directed acyclic graph.

4. The nodes in the message are sorted on increasing (rank, label).

3


