
3rdparty libraries

Jelle Hellings

June 15, 2011

1 Introduction

This document describes how the 3rdparty subdirectory of the exbisim solution
directory is organized to allow the exbisim solution to build debug and release
builds for 32bit and 64bit x86 target platforms.

2 The 3rd party libraries

This software project depends on several 3rd party libraries; we have used the
following libraries:

1. Boost C++ libraries; version 1.46.1; retrieved from SourceForge.

2. libxml2; version 2.7.8; retrieved from xmlsoft.org.

3. STXXL: Standard Template Library for Extra Large Data Sets; version
1.3.1; retrieved from SourceForge.

Our software is developed and tested with Visual Studio 2010 SP1; using the
Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 16.00.40219.01 for
80x86 and the Microsoft (R) C/C++ Optimizing Compiler Version 16.00.40219.01
for x64 compilers. The source code is not tested on other platforms; but we did
keep platform depended code to a minimum. All platform dependent code is
placed in files with pd suffix. See the code guidelines for more details on file
naming conventions used by this project.

3 Layout of the 3rdparty subdirectory

The 3rdparty subdirectory has a subdirectory include containing all header
files for the 3rd party libraries. For each library n there is also a subdirectory
n containing the build object files where our programs link with. The layout of
these subdirectories n is platform/config/lib where platform is win32 or x86
and config is debug or release. For each possibility the libraries should be
placed in the correct subfolder; the project and solution settings of the exbisim

solution depend on this structure for correct building the various projects (and
programs) for the various target configurations.

1

http://sourceforge.net/projects/boost/files/boost/1.46.1/boost_1_46_1.7z/download
ftp://xmlsoft.org/libxml2/libxml2-2.7.8.tar.gz
http://sourceforge.net/projects/stxxl/files/stxxl/1.3.1/stxxl-1.3.1.tar.gz/download


4 Setting up new Visual Studio Projects

The file template.vcxproj.template in the root directory of the exbisim so-
lution can be used as a template of new projects. This template has all libraries,
headers and other options preconfigured such that the project can successfully
use the mentioned 3rd party libraries.

5 Building the libraries

In general we have followed the details in the documentation of each library
when building the libraries. The following subsections describes details for each
library.

5.1 Boost C++ libraries

See the documentation for details on the building process. We have written a
script build.bat to build all variants. This script has a single parameter; the
target where all resulting libraries are stored. See the script for any details.

5.2 STXXL

See the documentation for details on the building process. STXXL can only
be build when the Boost C++ libraries have been build. The build process for
STXXL has not been automated by us.

Use the vcvarsall.bat script provided by your Visual C++ distribution to
set the build environment (x64 for 64bits, x86 or no argument for win32). Create
the file make.settings.local in the root directory of the STXXL sources to
configure the resulting STXXL library. Use the provided stxxl.txt as a start-
ing point. In the root directory of the STXXL sources run nmake library msvc

to built the STXXL library; and move the resulting file lib/libstxxl.lib to
the correct position in the 3rdparty subdirectory. Clean up the remainder by
running nmake clean msvc.

5.3 libxml2

See the documentation in the subdirectory win32/readme.txt in the source
distribution of libxml2 for details on building libxml2. Due to a bug in the 2.7.8
release we could not build libxml2 with the provided Makefile.msvc. There-
fore we have replaced the not-working Makefile.msvc of the 2.7.8 release by a
working version (file is retrieved from the GNOME source repository (commit
ae874211d4c4cd1044d9fe5d598049a99526822b)). This working version can be
found in the 3rdparty subdirectory.

Use the vcvarsall.bat script provided by your Visual C++ distribution to
set the build environment (x64 for 64bits, x86 or no argument for win32). Use
the script win32/configure.js to configure the build you want. We only need

2

http://boost.org/more/getting_started/windows.html
http://algo2.iti.kit.edu/stxxl/tags/1.3.1/installation_msvc.html
http://git.gnome.org/browse/libxml2/tree/win32/Makefile.msvc?id=ae874211d4c4cd1044d9fe5d598049a99526822b
http://git.gnome.org/browse/libxml2/tree/win32/Makefile.msvc?id=ae874211d4c4cd1044d9fe5d598049a99526822b


a very small portion of the libxml2 library (the XML Reader API); as such we
have build with the following configuration:

cscript configure.js trio=no ftp=no http=no html=no c14n=no

catalog=no docb=no xpath=no xptr=no

xinclude=no iconv=no icu=no iso8859x=no

zlib=no xml_debug=no mem_debug=no

run_debug=no regexps=no modules=no

tree=no reader=yes writer=no walker=no

pattern=no push=yes valid=no sax1=no

legacy=no output=yes schemas=no

schematron=no python=no compiler=msvc

debug=no static=yes cruntime=[/MDd|/MD]

Where cruntime=/MDd is used for debug builds and cruntime=/MD is used
for release builds. After configuration we have run nmake /f all and nmake

/f install for building the library. The resulting directories win32/include
and win32/lib are used for building our applications; and thus are moved to
the appropriate subdirectories of the 3rdparty subdirectory of the exbisim

solution. After building one can clean up by running nmake /f clean.

3


	Introduction
	The 3rd party libraries
	Layout of the 3rdparty subdirectory
	Setting up new Visual Studio Projects
	Building the libraries
	Boost C++ libraries
	STXXL
	libxml2


