Relative Expressive Power of Downward Fragments of Navigational Query Languages on Trees and Chains

Jelle Hellings
Hasselt University

Joint work with Marc Gyssens, Yuqing Wu, Dirk Van Gucht, Jan Van den Bussche, Stijn Vansummeren, and George H. L. Fletcher
Overview

Introduction

Summary of the results

The boolean collapse to $\mathcal{N}()$

The collapse of \cap and \setminus

Concluding remarks
Querying graphs

- Alice is the mother of Bob.
- Bob is the father of Eve.
- Eve works with Craig.
- Craig is the friend of Faythe.
- Faythe is the friend of Dan.
- Dan is the mother of Alice.
Querying graphs

\[\pi_1[\text{motherOf}] \circ [\text{motherOf} \cup \text{fatherOf}]^+ \]
Querying graphs

\[\pi_1[\text{friendOf} \setminus \text{worksWith}] \]
Navigational Expressions

\[e := \emptyset \mid \text{id} \mid \ell \text{ (for } \ell \text{ an edge-label)} \mid e \circ e \mid e \cup e \mid [e]^+ \mid \pi_1[e] \mid \pi_2[e] \mid \overline{\pi}_1[e] \mid \overline{\pi}_2[e] \mid e \cap e \mid e \setminus e \]

Question
Are all these operations necessary?
How does each operator influence expressive power?

Preliminary answer
We can use basic rewriting:

\[e_1 \cap e_2 = e_1 \setminus (e_1 \setminus e_2) \]
\[\pi_i[e] = \overline{\pi}_i[\overline{\pi}_i[e]] \]
\[\overline{\pi}_i[e] = \text{id} \setminus \pi_i[e] \]
Problem statement

We start with \(\{\emptyset, \text{id}, \cup, \circ\}\) and edge-labels

- Add any subset \(\mathcal{F}\) of \(\{\pi, \bar{\pi}, +, \cap, \setminus\}\),
 We denote the resulting query language by \(\mathcal{N}(\mathcal{F})\)
- Compare the expressive power of resulting languages
- Graphs: already fully studied by Fletcher et al.
- Trees: a few results are known (XML)

Definition
Let \(\mathcal{F} \subseteq \{+, \pi, \bar{\pi}, \cap, \setminus\}\).
\(\mathcal{F}\) is the superset of \(\mathcal{F}\) obtained by “basic rewriting”.

Example
\(\{\pi, \setminus\} = \{\pi, \bar{\pi}, \cap, \setminus\}\)
Overview

Introduction

Summary of the results

The boolean collapse to $\mathcal{N}()$

The collapse of \cap and \setminus

Concluding remarks
Results on trees and chains: the main results

- On labeled trees, we can do without \cap and $\\setminus$:
 \[\mathcal{N}(\mathcal{F}) \preceq_p \mathcal{N}(\mathcal{F} \setminus \{\cap, \\setminus\}) \]

- For boolean queries:
 - On unlabeled trees, only π adds expressive power:
 \[\mathcal{N}(+, \pi, \cap) \preceq_b \mathcal{N}(\cdot) \]
 - On labeled chains, we can do without π:
 \[\mathcal{N}(+, \pi) \preceq_b \mathcal{N}(\mathcal{F} \setminus \{\pi\}) \]
Results on trees and chains

<table>
<thead>
<tr>
<th></th>
<th>Boolean queries</th>
<th>Trees</th>
<th>Path queries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chains</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labeled</td>
<td>$\mathcal{N}(\pi)$</td>
<td>$\mathcal{N}(+,\pi)$</td>
<td>$\mathcal{N}(+,\pi)$</td>
</tr>
<tr>
<td></td>
<td>$\mathcal{N}(\pi, \cap)$</td>
<td>$\mathcal{N}(+, \pi, \cap)$</td>
<td>$\mathcal{N}(+, \pi, \cap)$</td>
</tr>
<tr>
<td></td>
<td>$\mathcal{N}(\pi, \setminus)$</td>
<td>$\mathcal{N}(+, \pi, \setminus)$</td>
<td>$\mathcal{N}(+, \pi, \setminus)$</td>
</tr>
<tr>
<td>Unlabeled</td>
<td>$\mathcal{N}(\pi)$</td>
<td>$\mathcal{N}(+, \pi)$</td>
<td>$\mathcal{N}(+, \pi)$</td>
</tr>
<tr>
<td></td>
<td>$\mathcal{N}(\pi, \cap)$</td>
<td>$\mathcal{N}(+, \pi, \cap)$</td>
<td>$\mathcal{N}(+, \pi, \cap)$</td>
</tr>
<tr>
<td></td>
<td>$\mathcal{N}(\pi, \setminus)$</td>
<td>$\mathcal{N}(+, \pi, \setminus)$</td>
<td>$\mathcal{N}(+, \pi, \setminus)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chains and Trees</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Labeled</td>
<td>$\mathcal{N}(\pi)$</td>
<td>$\mathcal{N}(+,\pi)$</td>
<td>$\mathcal{N}(+,\pi)$</td>
</tr>
<tr>
<td></td>
<td>$\mathcal{N}(\pi, \cap)$</td>
<td>$\mathcal{N}(+, \pi, \cap)$</td>
<td>$\mathcal{N}(+, \pi, \cap)$</td>
</tr>
<tr>
<td></td>
<td>$\mathcal{N}(\pi, \setminus)$</td>
<td>$\mathcal{N}(+, \pi, \setminus)$</td>
<td>$\mathcal{N}(+, \pi, \setminus)$</td>
</tr>
<tr>
<td>Unlabeled</td>
<td>$\mathcal{N}(\pi)$</td>
<td>$\mathcal{N}(+, \pi)$</td>
<td>$\mathcal{N}(+, \pi)$</td>
</tr>
<tr>
<td></td>
<td>$\mathcal{N}(\pi, \cap)$</td>
<td>$\mathcal{N}(+, \pi, \cap)$</td>
<td>$\mathcal{N}(+, \pi, \cap)$</td>
</tr>
<tr>
<td></td>
<td>$\mathcal{N}(\pi, \setminus)$</td>
<td>$\mathcal{N}(+, \pi, \setminus)$</td>
<td>$\mathcal{N}(+, \pi, \setminus)$</td>
</tr>
</tbody>
</table>
Overview

Introduction

Summary of the results

The boolean collapse to $\mathcal{N}()$

The collapse of \cap and \setminus

Concluding remarks
The boolean collapse to \(\mathcal{N}(\cdot) \) on unlabeled trees

Theorem

Let \(\mathcal{F} \subseteq \{+ , \pi , \cap \} \). On unlabeled trees we have \(\mathcal{N}(\mathcal{F}) \preceq_b \mathcal{N}(\cdot) \).

Definition (homomorphism)

A mapping \(h : \mathbb{N}_1 \rightarrow \mathbb{N}_2 \) is a homomorphism from \(G_1 = (\mathbb{N}_1, E_1) \) to \(G_2 = (\mathbb{N}_2, E_2) \) if \((m, n) \in E_1 \) implies \((h(m), h(n)) \in E_2 \).

Proposition

The language \(\mathcal{N}(+, \pi, \cap) \) is closed under homomorphisms: if there is a homomorphism \(h \) from \(G_1 \) to \(G_2 \), then \(h(e(G_1)) \subseteq e(G_2) \).
Proof: $\mathcal{N}(+, \pi, \cap)$ cannot distinguish trees from chains.
Proof: $\mathcal{N}(+, \pi, \cap)$ cannot distinguish trees from chains

- Provide homomorphism from tree \mathcal{T} to chain \mathcal{C}
Proof: $\mathcal{N}(+, \pi, \cap)$ cannot distinguish trees from chains

- Provide homomorphism from tree \mathcal{T} to chain \mathcal{C}
- Provide homomorphism from chain \mathcal{C} to tree \mathcal{T}
Proof: $N(+, \pi, \cap)$ can only query on depth

Conclusion

Even $N(+, \pi, \cap)$ can only express queries of the form:

The height of the tree is at least k ($= \ell^k = \underbrace{\ell \circ \ldots \circ \ell}_{k \text{ terms}}$)

Theorem

Let $\mathcal{F} \subseteq \{+, \pi, \cap\}$. On unlabeled trees we have $N(\mathcal{F}) \preceq_b N()$.

Overview

Introduction

Summary of the results

The boolean collapse to $\mathcal{N}()$

The collapse of \cap and \setminus

Concluding remarks
Removing \cap and \setminus from simple queries

Example

$$[\ell^3]^+ \cap [\ell^7]^+ = [\ell^{21}]^+$$

$$[\ell^3]^+ \setminus [\ell^7]^+ = (\ell^3 \cup \ell^6 \cup \ell^9 \cup \ell^{12} \cup \ell^{15} \cup \ell^{18}) \circ ([\ell^{21}]^+ \cup \text{id})$$

Basic observations

- Expressions in $\mathcal{N}(+) \text{ are regular path queries}$
- Regular languages (expressions) are closed under \cap and \setminus

Question

How to generalize to π and $\overline{\pi}$?
Definition (condition automaton)

A condition automaton is a 7-tuple \(\mathcal{A} = (S, \Sigma, C, I, F, \delta, \gamma) \).

![Diagram of condition automata]
Semantics of condition automata

- Take a path in automaton from initial to final state
- Map to a path in a tree from m to n with equal labeling
- State s maps to node k: k satisfies the conditions of s
Semantics of condition automata

- Take a path in automaton from initial to final state
- Map to a path in a tree from m to n with equal labeling
- State s maps to node k: k satisfies the conditions of s
Semantics of condition automata

- Take a path in automaton from initial to final state
- Map to a path in a tree from \(m \) to \(n \) with equal labeling
- State \(s \) maps to node \(k \): \(k \) satisfies the conditions of \(s \)
Condition automata and navigational expressions

Proposition

Let $\mathcal{F} \subseteq \{+, \pi, \overline{\pi}\}$. The class of condition automata specified for $\mathcal{N}(\mathcal{F})$ in the following table is path-equivalent with $\mathcal{N}(\mathcal{F})$.

<table>
<thead>
<tr>
<th>Navigational language</th>
<th>Class of condition automata</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{N}()$</td>
<td>${+, \pi, \overline{\pi}}$-free and acyclic.</td>
</tr>
<tr>
<td>$\mathcal{N}(\pi)$</td>
<td>${+, \overline{\pi}}$-free and acyclic.</td>
</tr>
<tr>
<td>$\mathcal{N}(\pi, \overline{\pi})$</td>
<td>${+}$-free and acyclic.</td>
</tr>
<tr>
<td>$\mathcal{N}(\pi)$</td>
<td>${\pi, \overline{\pi}}$-free.</td>
</tr>
<tr>
<td>$\mathcal{N}(\pi, \overline{\pi})$</td>
<td>${\overline{\pi}}$-free.</td>
</tr>
<tr>
<td>$\mathcal{N}(\pi, \pi)$</td>
<td>no restrictions.</td>
</tr>
</tbody>
</table>
Condition automata and intersect

- Basically: use cross-product construction
- Take care of id-transitions by first removing them

Proposition

Condition automata are closed under \cap.
Condition automata and intersect

- Basically: use cross-product construction
- Take care of \text{id}-transitions by first removing them

\begin{center}
\begin{tikzpicture}

\node[state,initial] (q1) at (0,0) {q_1};
\node[state] (q2) at (-2,-2) {q_2};
\node[state] (q3) at (2,-2) {q_3};
\node[state] (q4) at (-2,-4) {q_4};

\path[->]
(q1) edge node{ℓ} (q2)
(q1) edge node{ℓ} (q3)
(q2) edge node{id} (q4)
(q3) edge node{id} (q4)
(q2) edge node{id} (q1)
(q3) edge node{id} (q1);

\node at (0,-1.9) {$\{c_1\}$};
\node at (-2,-3.1) {$\{c_2\}$};
\node at (2,-3.1) {$\{c_3\}$};
\node at (-2,-5.1) {$\{c_4\}$};

\end{tikzpicture}
\end{center}

Proposition

\textit{Condition automata are closed under} \cap.
Condition automata and difference

- Difference: in terms of ∩ and complement: $S \setminus T = S \cap \overline{T}$
- In our setting: restrict T to the downward complement T_{\downarrow}

Definition (deterministic condition automaton)

- For each node n: there exists exactly one initial state s such that n satisfies s.
- If node n satisfies state q, then, for each edge (n, ℓ, m) there exists exactly one transition (q, ℓ, p) such that p satisfies m.

```
q1 -------\[
 q2 \quad \ell \quad q3
     \ell

\{\pi_2[\ell]\}

\{\pi_2[\ell]\}

p1 -------/[
```


Condition automata and downward complement

- Downward complement of deterministic condition automaton

 Swap the final states

- Conclusion: if we can construct a deterministic condition automaton, then condition automata are closed under \(\setminus\)

Proposition

For every condition automaton there is a path-equivalent deterministic condition automaton.

In this construction \(\overline{\pi}\) is introduced if \(\pi\) was already used.

Theorem

On labeled trees we have \(\mathcal{N}(\mathcal{F}) \preceq_p \mathcal{N}(\mathcal{F} \setminus \{\cap, \setminus\})\).*
Overview

Introduction

Summary of the results

The boolean collapse to $\mathcal{N}()$

The collapse of \cap and \setminus

Concluding remarks
Conclusions and Future Work

- Full characterization of the expressive power of downward navigational expressions
 - On trees and on chains
 - For boolean queries and path queries

- Typical non-downward operators are omitted
 - Next: we also include converse and diversity
 - We have some initial results
Proposition (Fletcher et al. ICDT’11)

Let $\mathcal{F}_1, \mathcal{F}_2 \subseteq \{+, \pi, \bar{\pi}, \cap, \setminus\}$.

- **Labeled graphs:**
 - $\mathcal{N}(\mathcal{F}_1) \preceq_b \mathcal{N}(\mathcal{F}_2)$: if $\mathcal{F}_1 \subseteq \mathcal{F}_2$.

- **Unlabeled Graphs:**
 - $\mathcal{N}(\mathcal{F}_1) \preceq_p \mathcal{N}(\mathcal{F}_2)$: if $\mathcal{F}_1 \subseteq \mathcal{F}_2$.
 - $\mathcal{N}(\mathcal{F}_1) \preceq_b \mathcal{N}(\mathcal{F}_2)$: if $\mathcal{F}_1 \subseteq \mathcal{F}_2$ or if $\mathcal{F}_1 \subseteq \{\pi\}$ and $\mathcal{F}_2 = \mathcal{F}_1 \cup \{+\}$.