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Abstract The emergence of blockchains has fueled the
development of resilient systems that deal with Byzan-
tine failures due to crashes, bugs, or even malicious
behavior. Recently, we have also seen the exploration
of sharding in these resilient systems, this to provide
the scalability required by very large data-based ap-
plications. Unfortunately, current sharded resilient sys-
tems all use system-specific specialized approaches to-
ward sharding that do not provide the flexibility of
traditional sharded data management systems. To im-
prove on this situation, we fundamentally look at the
design of sharded resilient systems. We do so by intro-
ducing ByShard, a unifying framework for the study
of sharded resilient systems. Within this framework,
we show how two-phase commit and two-phase lock-
ing—two techniques central to providing atomicity and
isolation in traditional sharded databases—can be im-
plemented efficiently in a Byzantine environment, this
with a minimal usage of costly Byzantine resilient prim-
itives. Based on these techniques, we propose eighteen
multi-shard transaction processing protocols. Finally,
we practically evaluate these protocols and show that
each protocol supports high transaction throughput and
provides scalability while each striking its own trade-off
between throughput, isolation level, latency, and abort
rate. As such, our work provides a strong foundation for
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1 Introduction

The emergence of blockchains is fueling interest in new
resilient systems that provide data and transaction pro-
cessing in the presence of Byzantine behavior, e.g., faulty
behavior originating from software, hardware, or net-
work failures, or from coordinated malicious attacks [19,
21,2,49,15,41,20]. These blockchain-inspired systems are
attractive, as they can provide resilience among many
independent participants [19,40,31]. Due to these qual-
ities, interest in blockchains is widespread and includes
applications in health care, IoT, finance, agriculture,
and the governance of supply chains for fraud-prone
commodities (e.g., such as hardwood and fish) [34,17,
38,53,45,35,50]. As such, blockchain-inspired systems
can prevent service disruption due to failures that com-
promise part of the system and can improve data qual-
ity of data that is managed by many independent par-
ties, potentially reducing the huge costs associated with
both [8,33].

Unfortunately, typical blockchain-inspired systems
utilize a fully-replicated design in which every partic-
ipating replica holds all data and processes all trans-
actions, which is at odds with the scalability require-
ments of modern very large data-based applications [43,
44]. Consequently, recent blockchain-inspired data pro-
cessing systems such as AHL [11], Caper [2], Cer-
berus [25], Chainspace [1], and SharPer [3] propose
to provide scalability by introducing sharding : instead
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Figure 1 A geo-scale aware sharded design in which four re-
silient clusters hold only a part of the data. Local decisions within
a cluster are made via consensus (normal arrows), whereas multi-
shard coordination to process multi-shard transactions requires
cluster-sending (double-lined arrows).

of operating a single fully-replicated system, one par-
titions the data (e.g., based on location) among sev-
eral independently-run blockchain-based resilient clus-
ters that each operate as a single shard using consensus
and communicate with each other via cluster-sending.
We have sketched this design in Figure 1.

In such a sharded design, several resilient clusters
together maintain all data, while each cluster only holds
part of the data. Consequently, sharded designs provide
storage scalability as adding shards increases overall
storage capacity. Furthermore, sharded designs promise
processing scalability as transactions on data held by
different shards can be processed in parallel. To deliver
on the promises of sharding, one needs an efficient way
to process multi-shard transactions that affect data on
multiple shards, however [42].

Unfortunately, existing sharded resilient systems use
system-specific solutions to provide multi-shard trans-
action processing: they either are mainly optimized for
single-shard transactions [11], optimized for transac-
tions that do not content for the same resources [2,3],
or depend on the specifics of a UTXO-based data model
to deal with contention [1]. This is in contrast with tra-
ditional distributed databases that provide application-
agnostic ACID-compliant data and transaction process-
ing that is tunable to a wide range of application-specific
requirements. For example, by offering flexible multi-

shard transaction processing using two-phase commit [18,
42,46] and two-phase locking [42].

This raises the question whether such flexible multi-
shard transaction capabilities can be provided in a Byz-
antine environment. In this paper, we positively answer
this question in three steps. First, we take a structured
look at providing resilience in a Byzantine environment
and how this affects sharded transaction processing.
Next, we introduce the ByShard framework, a formal-
ization of sharded resilient systems, and show how the
design principles of traditional distributed databases
can be expressed within this framework. Finally, we use
the ByShard framework to evaluate the resulting de-
sign space for multi-shard transaction processing in a
Byzantine environment.

To process multi-shard transactions, ByShard in-
troduces the orchestrate-execute model (OEM). This
model can incorporate all commit, locking, and exe-
cution operations required for processing a multi-shard
transaction in at-most two consensus steps per involved
shard. The first component of OEM is orchestration:
the replication of transactions among all involved shards
while also reaching an atomic decision on whether the
transaction can be committed or not. To provide orches-
tration, we show how to adapt two-phase commit style
orchestration to a Byzantine environment at a mini-
mal cost (in terms of consensus steps at the involved
shards). In specific:

1. We provide linear orchestration that minimizes the
overall number of consensus and cluster-sending steps
necessary to reach an agreement decision, this at the
cost of latency.

2. We provide centralized orchestration and distributed
orchestration that both minimize the latency nec-
essary to reach an agreement decision by reaching
such decisions in at-most three or four consecutive
consensus steps, respectively, this at the cost of ad-
ditional consensus and cluster-sending steps.

3. To enable centralized and distributed orchestration,
we introduce Byzantine primitives to process all com-
mit and abort votes using only a single consensus
step per involved shard.

The second component of OEM is execution of trans-
actions. To provide execution capabilities that main-
tain data consistency among shards, we show how to
adapt standard two-phase locking style execution to a
Byzantine environment at a minimal cost (in terms of
consensus steps at the involved shards). In specific:

4. We introduce Byzantine primitives to provide block-
ing locks that can be processed without any addi-
tional consensus steps for the involved shards. Fur-
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thermore, we show how these primitives also sup-
port non-blocking locks.

5. Based on these primitives, we show how read uncom-
mitted, read committed, and serializable execution of
transactions can be provided.

6. As a baseline for comparison, we also include isolation-
free execution.

These orchestration and execution methods result in
eighteen practical protocols for processing multi-shard
transaction. To further showcase the flexibility of By-
Shard, we show that both AHL [11] and a generaliza-
tion of Chainspace [1] can be expressed within OEM.
We refer to Table 1 for an analytical comparison of each
of these protocols. Finally, we apply the above tech-
niques to a data and transaction model representative
for a Byzantine sharded environment and evaluate the
behavior of the resulting designs in eight experiments:

7. Our evaluation shows that all eighteen ByShard
protocols can effectively deal with multi-shard trans-
action workloads and have excellent scalability : in-
creasing the number of shards will always decrease
the work done per shard.

8. Furthermore, all eighteen ByShard protocols have
excellent transaction throughput when contention is
low. When contention is high, the protocols each
make their own trade-off between isolation level, la-
tency, and abort rate while maximizing throughput.

As such, we believe that our work provides a solid foun-
dation for the development of flexible general-purpose
scalable Byzantine data management systems.

2 Background on Resilience

Before we look at the design of sharded resilient sys-
tems, we take a look at the operations of traditional
(non-sharded) resilient systems that can deal with Byz-
antine behavior (e.g., replicas that crash, behave faulty,
or act malicious). Typical resilient systems process a
transaction τ requested by client c by performing five
steps:

1. first, τ needs to be received by the system;
2. second, τ must be reliably replicated among all repli-

cas in the system;
3. third, the replicas need to agree on an execution

order for τ ;
4. next, the replicas each need to execute τ and update

their current state accordingly; and
5. finally, client c needs to be informed about the re-

sult.

At the core of resilient systems are consensus pro-
tocols [7,9,19,37,38] that coordinate the operations of

individual replicas in the system by replicating trans-
actions among all non-faulty replicas in a fault-tolerant
manner, e.g., a Byzantine fault-tolerant system driven
by Pbft [9] or a crash fault-tolerant system driven by
Paxos [37]:

Definition 1 A consensus protocol coordinates deci-
sion making among the replicas of a resilient cluster (of
replicas) S by providing a reliable ordered replication
of decisions. To do so, consensus protocols provide the
following guarantees:.1

1. if non-faulty replica r ∈ S makes an i-th decision,
then all non-faulty replicas r′ ∈ S will make an
i-th decision (whenever communication becomes re-
liable);

2. if non-faulty replicas r1,r2 ∈ S make i-th decisions
D1 and D2, respectively, then D1 = D2 (they make
the same i-th decisions); and

3. whenever a non-faulty replica learns that a decision
D needs to be made, then it can force a consensus
decision on D.

Resilient systems operate in rounds, and in each
round consensus is used to decide on and replicate a
single transaction (or a set of transactions if batch-
ing is used [19]). The round in which a transaction is
replicated also determines a linearizable execution or-
der. Hence, replication of a transaction and agreeing
on an execution order (steps 2 and 3 above) are a sin-
gle consensus step. In practical deployments of resilient
systems, reaching consensus on a decision is costly and
takes a rather long time. We illustrate this next.

Example 1 Consider a deployment of the Pbft consen-
sus protocol [9,19,21]. To maximize resilience and to
deal with disruptions at any location, individual repli-
cas need to be spread out over a wide-area network,
e.g., spread-out in North America. Due to the spread-
out nature of the system, the message delay between
replicas is high, and a message delay of δ = 10ms is at
the low end [11,20].

Pbft operates via a primary-backup design in which,
under normal conditions, a designated replica (the pri-
mary) is responsible for proposing decisions to all other
replicas (the backups). The primary does so via a Pre-
Prepare message. Next, all replicas exchange their lo-
cal state to determine whether the primary properly
proposed a decision. To do so, all replicas participate

1 We provide a practical definition of consensus. In prac-
tice, decisions will be made on external requests (guarantee-
ing non-triviality) if such requests are available to non-faulty
replicas (guaranteeing termination). Theoretical definitions typ-
ically have more abstract requirements for termination and non-
triviality.
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Figure 2 A schematic representation of the normal-case of
Pbft: the primary p proposes transaction τ to all replicas via
a PrePrepare message. Next, replicas commit to τ via a two-
phase all-to-all message exchange. In this example, replica r3 is
faulty and does not participate.

in two phases of all-to-all communication (via Prepare
and Commit messages). Hence, if the message delay is
δ, then it will take at least 3δ (first the PrePrepare
phase, then the Prepare phase, and, finally, the Com-
mit phase) before a proposed decision is accepted by
all replicas: e.g., with δ = 10ms, it will take at least
3δ = 30ms for Pbft to decide on a transaction after
the primary received that transaction. In Figure 2, we
have illustrated this basic working of Pbft.

In a naive implementation of Pbft, the message de-
lay ultimately limits the transaction throughput: if the
(ρ+ 1)-th consensus decision will be made sequentially
after the ρ-th decision, then the resulting throughput
will be at-most 1/(3δ) ≈ 33 txn/s in the sketched en-
vironment. To increase performance, Pbft implemen-
tations can use out-of-order processing in which repli-
cas can work on several consensus rounds at the same
time [9,11,21,19]. If, for example, individual replicas
have sufficient network bandwidth and memory buffers
available, then a fine-tuned out-of-order Pbft can eas-
ily reach 1000 txn/s. Furthermore, batching can be used
such that each consensus decision itself represents many
transactions, resulting in systems that can reach even
higher throughputs. The high cost of consensus is not
specific to Pbft and is shared by all other popular con-
sensus protocols, e.g., in HotStuff [55], each consen-
sus decision will take at least 7δ = 70ms in the sketched
environment.

To assure that all non-faulty replicas have the same
state, transactions are executed in the linearizable order
determined via consensus and must be deterministic in
the sense that execution must always produce exactly
the same results given identical inputs:

Example 2 Consider a banking system in which each
transaction changes the balance of one or more ac-
counts. The current state is the balance of each account
and can be obtained from the initial state by execut-
ing each transaction in-order. Consider the first four

Ana $0
Bo $0
Elisa $0

τ1−→
Ana $500
Bo $0
Elisa $0

τ2−→

Ana $500
Bo $200
Elisa $300

τ3−→
Ana $470
Bo $200
Elisa $330

τ4−→
Ana $470
Bo $200
Elisa $260

Figure 3 Evolution of the current state while executing the
transactions of Example 2.

transactions

τ1 = “add $500 to Ana”;
τ2 = “add $200 to Bo and $300 to Elisa”;
τ3 = “move $30 from Ana to Elisa”;
τ4 = “remove $70 from Elisa”

(in which the balance of each account is referred to
by the name of the account holder). After execution
of these transactions, the current state evolves as illus-
trated in Figure 3.

As all replicas maintain exactly the same (fully-
replicated) state and, using consensus, replicate exactly
the same transactions and determine exactly the same
execution order, each replica can execute each transac-
tion and update their current state fully independent
(without any further need to exchange information).
Hence, in a resilient system, transaction processing can
be reduced to the single problem of ordered transac-
tion replication, which is solved by off-the-shelf consen-
sus protocols [9,37,55] (independent of the data and
transaction model supported by the system).

Here, we assume that transactions are always repli-
cated and executed as a whole. To deal with trans-
actions that are not applicable, e.g., that violate con-
straints, we can include abort as a legitimate execution
outcome (that does not affect the current state). This
assumption is essential to reliably deal with Byzantine
behavior: all decisions—including the decision that a
transaction is not applicable—need to be made by all
non-faulty replicas (via consensus), this to ensure that
Byzantine replicas cannot force such a decision or in-
terfere with reliably making such a decision.

Example 3 Consider the banking system of Example 2.
After execution of τ1, τ2, τ3, and τ4, Ana has a bal-
ance of $470. Now consider transaction τ5 = “move
$500 from Ana to Bo”. If the system prevents negative
account balances, then τ5 cannot be successfully exe-
cuted after τ4. Hence, if τ5 is replicated and scheduled
for execution right after τ4, then the transaction must
be aborted at all replicas, and the client needs to be
informed of this abort.
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3 Sharded resilient systems

In the previous section, we detailed the operations of
traditional non-sharded resilient systems: we outlined
five steps resilient systems perform to process trans-
actions in a Byzantine environment and showed that
all necessary coordination and communication between
replicas in such a system is restricted to a single ordered
replication step, which is handled via consensus.

The step from a non-sharded to a sharded resilient
system complicates the processing of transactions sig-
nificantly. To illustrate this, we revisit the five steps for
processing a transaction in a resilient system. Consider
a multi-shard transaction τ processed by a resilient sys-
tem and assume we know which shards are involved in
processing τ . First, the transaction τ needs to be repli-
cated to all replicas of all shards involved in execut-
ing τ . After this, the replicas need to agree an execu-
tion order for τ . In fully-replicated systems both steps
are solved at once using system-wide consensus, as the
replication order determines a linearizable execution or-
der. In a sharded system, per-shard replication of τ only
yields a local linearizable replication order within that
shard, however: as distinct shards can replicate trans-
actions locally in different orders, the local replication
order does not necessary determine a conflict-free exe-
cution order for τ across shards (e.g., serializable exe-
cution [4,5,22]). Hence, determining an execution order
of τ across shards—necessary to maintain data consis-
tency across shards—requires further coordination be-
tween the involved shards.

Besides determining the execution order, also execu-
tion and updating the state of replicas poses a challenge
in a sharded environment. Within traditional systems,
individual replicas can independently execute transac-
tions and update their state accordingly, as each replica
holds a full copy of all data. This no longer holds for
multi-shard transaction: each replica only holds a copy
of the data in its shard. Hence, for the execution of τ ,
replicas in the involved shards need to exchange any
necessary state. This exchange is complicated by the
presence of Byzantine replicas in each of the involved
shards and, hence, requires additional coordination to
assure that all necessary state is reliably exchanged.

Next, we will step-wise address these challenges to-
wards multi-shard transaction processing in sharded re-
silient systems. First, we introduce the ByShard frame-
work, a formalization of sharded resilient systems. Next,
we present the orchestrate-execute model (OEM) used
by ByShard to process multi-shard transactions. Then,
in Section 4, we propose orchestration methods inspired
by two-phase commit. Next, in Section 5, we propose
execution methods inspired by two-phase locking. Fi-

nally, in Section 6, we evaluate the performance of trans-
action processing via OEM in ByShard.

3.1 A resilient sharding framework

Let R be a set of replicas. We model a sharded sys-
tem as a partitioning of R into a set of z shards S =

{S1, . . . ,Sz}. Let S ∈ S be a shard. We write nS = |S|
to denote the number of replicas in S and fS = |S| to
denote the Byzantine faulty replicas in S. We assume
nS > 3fS , a minimal requirement to deal with Byz-
antine behavior within a single shard in practical set-
tings [13,14]. Let τ be a transaction. We write shards(τ) ⊆
S to denote the shards that are affected by τ (the
shards that contain data that τ reads or writes). We say
that τ is a single-shard transaction if |shards(τ)| = 1

and a multi-shard transaction otherwise.

Example 4 Consider a banking system similar to that
of Example 2. This time, however, the system is sharded
into twenty-six shards S = {Sa, . . . ,Sz}, one for each
letter of the alphabet, such that the shard Sα, α ∈
{a, . . . , z}, holds accounts of people whose name starts
with α. Now reconsider the transactions of Example 2.
We have shards(τ1) = {Sa}, shards(τ2) = {Sb,Se},
shards(τ3) = {Sa,Se}, and shards(τ4) = {Se}. Hence,
transactions τ1 and τ4 are single-shard transactions,
whereas τ2 and τ3 are multi-shard transactions.

Within ByShard, we can employ any consensus
protocol [7,9,37,38] to make decisions within a shard,
which allows us to operate shards as if they are a single-
replica shard. We assume that consensus protocols in
ByShard only make valid decisions: each decision made
by a shard S will reflect a single processing step at that
shard of some transaction. Within ByShard, shards
perform consensus independently of each other. Hence,
different shards can concurrently make distinct consen-
sus decisions. We also need a Byzantine resilient primi-
tive that enables coordination between shards. For this
role, we can choose any cluster-sending protocol [28,27]
that provides reliable communication between shards:

Definition 2 A cluster-sending protocol provides reli-
able communication between resilient clusters S1 and
S2. To enable S1 to send a value v to S2, cluster send-
ing protocols provide the following guarantees:

1. S1 is able to send v to S2 only if there is agreement
on sending v among the non-faulty replicas in S1;

2. all non-faulty replicas in S2 will receive the value v;
and

3. all non-faulty replicas in S1 obtain confirmation of
receipt.
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In ByShard, cluster-sending steps always follow con-
sensus decision. Hence, agreement on any cluster-sending
step will be reached without further consensus over-
head.

3.2 The orchestrate-execute model

Consider a multi-shard transaction τ . To process this
transaction, we will require commit steps to replicate
the transaction among all replicas in all involved shards
and to reach an atomic decision on whether to commit
or abort τ . Furthermore, we will require locking steps
to provide isolated execution, guaranteeing a consistent
execution order among all shards, and execution steps
that update the state of individual replicas.

At the same time, we want to minimize the number
of consensus decisions at each involved shard to imple-
ment these commit, locking, and execution steps. To do
so, we propose the orchestrate-execute model (OEM)
that is able to incorporate the necessary commit, lock-
ing, and execution steps required for processing a multi-
shard transaction in at-most two consensus steps per
involved shard. In OEM, processing of a multi-shard
transaction τ is modeled via individual shard-steps that
are performed independently by each shard in shards(τ)

via consensus. Each shard-step of S ∈ shards(τ) can
inspect local data at S, modify local data at S, and
forward execution to other shards via cluster-sending:

Example 5 Consider the sharded banking example of
Example 4 and consider the transaction

τ = “if Ana has $500 and Bo has $200, then
move $400 from Ana to Elisa;
move $100 from Bo to Elisa”,

requested by client c. We have shards(τ) = {Sa,Sb,Se}.
Next, we rewrite τ to a processing plan with a minimal
number of shard-steps (on success). This plan has four
shard-steps, namely:

σ1 = “if Ana has $500,
then remove $400 from Ana; =⇒Sb

(σ2)

else send failure to c”
σ2 = “if Bo has $200,

then remove $100 from Bo; =⇒Se
(σ3)

else =⇒Sa
(σ4)”

σ3 = “add $500 to Elisa and send success to c”
σ4 = “add $400 to Ana and send failure to c”

In which =⇒S(σ) represents a cluster-sending step that
forwards execution to shard S, which is then instructed

to execute shard-step σ. For simplicity, we omitted any
locking from this processing plan. Hence, this plan re-
sults in a non-isolated execution that can violate con-
sistency constraints on the data. Notice that the shards
affected by processing τ depend on the current state:
depending on the current state of Sa and Sb, either only
Sa is affected, or Sa and Sb are affected, or Sa, Sb, and
Se are affected.

OEM overlaps the operations necessary for provid-
ing atomicity, isolation, and consistency [4,5,22] to min-
imize the number of consensus steps. For this design,
OEM utilizes only three types of shard-steps per shard:

Vote-step A vote-step Vote(S) for S verifies constraints
to determine whether S votes to either commit or
abort. Furthermore, the vote-step can make local
changes, e.g., modify local data or acquire locks. To
simplify presentation, we assume that a vote-step
yielding an abort vote does not have any side-effects.

Commit-step A commit-step Commit(S) for S performs
necessary operations to finalize τ when τ is com-
mitted, e.g., modify data and release locks obtained
during a preceding vote-step.

Abort-step An abort-step Abort(S) for S performs nec-
essary operations to roll back τ when τ is aborted,
e.g., roll back local changes of a preceding vote-step
or release locks obtained during a preceding vote-
step.

Whether a vote-step, commit-step, or abort step is nec-
essary for a given shard S when processing a transaction
τ with S ∈ shards(τ) depends on the details of τ and
on the execution method used (see Section 5):

Example 6 Consider the processing plan for τ of Ex-
ample 5. The shard-steps σ1 and σ2 are vote-steps that
decide whether τ can commit by checking the balance of
Ana and Bo. The shard-step σ3 is a commit-step that
finalizes execution. Finally, shard-step σ4 is an abort-
step that rolls back the modifications made by vote-
step σ1. This abort-step is only executed if Ana has
$500 (hence, σ1 removed $400), but Bo does not have
$200. Note that there is no abort-step for shards Sb and
Se, as no changes are made to accounts on these shard
before a commit decision was made (by σ2).

In the following two sections, we will discuss how
to process multi-shard transactions using these three
shard-steps with minimal cost (in terms of consensus
and cluster-sending steps).

4 Providing orchestration

Let τ be a multi-shard transaction. The first part of
processing τ is to orchestrate the replication of τ to



ByShard: Sharding in a Byzantine Environment 7

the involved shards in shards(τ), assure that all these
shards reach an atomic decision on whether to com-
mit (and execute τ) or to abort (and cancel execution
of τ), and trigger the corresponding commit-steps or
abort-steps. As such, orchestration mimics the role of
commit protocols in traditional sharded data manage-
ment systems [18,42,46]. Next, we introduce the three
orchestration methods of ByShard.

4.1 Linear orchestration

First, we propose an orchestration method based on the
traditional linear two-phase commit protocol (Linear-
2PC) [18,42].

Let S1, . . . ,Sn be an ordering of all shards S1, . . . ,

Sn ∈ shards(τ) with vote-steps. The transaction is or-
chestrated towards a decision by starting execution of
Vote(S1). If execution of Vote(Si), 1 ≤ i < n, results
in a commit vote, then Si forwards execution of τ to
Si+1, after which Si+1 will start execution of Vote(Si+1).
If execution of Vote(Sn) results in a commit vote,
then τ will be committed. To do so, Sn forwards ex-
ecution of τ to all shards S ∈ shards(τ) with a commit-
step Commit(S), after which each such shard will ex-
ecute Commit(S) in parallel. Finally, if execution of
Vote(Si), 1 ≤ i ≤ n, results in an abort vote, then
τ will immediately be aborted without further vote-
steps (fast-abort). To do so, Si forwards execution of
τ to all shards S ∈ {S1, . . . ,Si−1} with an abort-step
Abort(S), after which each such shard will execute
Abort(S) in parallel. We illustrated linear orchestra-
tion in Figure 4, left.

Theorem 1 Let τ be a transaction with nv vote-steps,
nc commit-steps, and na abort-step. Using linear or-
chestration, τ can be committed (aborted) in nv + 1

(in at-most nv + 1) consecutive consensus steps using
nv + nc (using at-most nv + na) consensus steps and
using nv + nc − 1 (using at-most nv + na − 1) cluster-
sending steps.

Proof Assume that τ is committed. In this case, the
nv vote-steps are performed in sequence, after which
all nc commit-steps are performed in parallel. Hence,
we use nv + nc consensus steps, of which nv + 1 need
to be consecutive. To forward execution, nv + nc − 1

cluster-sending steps are performed. The case in which
τ is aborted is analogous.

The main strengths of linear orchestration are its
simplicity, the flexibility in the order in which vote-
steps are processed, and its ability to abort-fast. As
linear orchestration will only perform abort-steps at
previously-voted shards, one can minimize the number

of abort-steps by first processing vote-steps of shards
with only vote-steps, and only after that the shards with
both vote- and abort-steps. Furthermore, if heuristics
are available, then linear orchestration can prioritize
vote-steps with high likelihood of constraint failure in
an attempt to quickly arrive at an abort decision. Fi-
nally, we can eliminate the commit-step or abort-step
for Sn, as these steps can be processed at the same time
as the vote-step of Sn.

4.2 Centralized orchestration

As we have seen, linear orchestration is simple and, due
to its ability to abort-fast, can minimize the number
of shard-steps performed to process τ . This approach
comes at the cost of consecutively visiting each shard
that has applicable vote-steps. Hence, linear orchestra-
tion takes at worst |shards(τ)|+ 1 consecutive consen-
sus steps for the execution of a transaction τ . As an
alternative, we can consider parallelized orchestration
by processing all vote-steps at the same time (in par-
allel). Next, we propose such orchestration based on
the traditional centralized two-phase commit protocol
(Centralized-2PC) [42]. First, we present the core idea
of such centralized orchestration. Then, we detail on
how to efficiently collect and process the votes result-
ing from all vote-steps in a Byzantine environment.

Let Sr,S1, . . . ,Sn be an ordering of all shards Sr,

S1, . . . ,Sn ∈ shards(τ) with vote-steps. We refer to Sr

as the root for τ , which will coordinate the orchestra-
tion of τ . To assure that the role of the root is dis-
tributed over all shards, centralized orchestration does
not depend on any particular choice of Sr. Hence, any
Sr ∈ shards(τ) will do. The root of τ starts by executing
Vote(Sr). If Vote(Sr) results in a commit vote, then
Sr forwards execution of τ to all shards S1, . . . ,Sn, after
which each shard Si, 1 ≤ i ≤ n, executes Vote(S) in
parallel. After forwarding, Sr can proceed with shard-
steps of other transactions. Let Si, 1 ≤ i ≤ n, be a
shard. If Vote(Si) results in a commit vote, then Si

sends a commit vote via cluster-sending to Sr. Other-
wise, if Vote(Si) results in an abort vote, then Si sends
an abort vote via cluster-sending to Sr. After sending
a vote to Sr, Si can proceed with shard-steps of other
transactions.

If Sr receives commit votes from each shard S1, . . . ,

Sn, then τ will be committed. To do so, Sr forwards
a global commit vote via cluster-sending to all shards
S ∈ shards(τ) with a commit-step Commit(S), after
which each such shard executes Commit(S) in parallel.
If Sr receives a single abort vote, then τ will be aborted.
To do so, Sr forwards a global abort vote via cluster-
sending to all shards S ∈ {S1, . . . ,Sn} with an abort-
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Linear
S1

S2

S3

S4

S5

S6

Vote Vote Vote Vote Commit

Centralized
(root) S1

S2

S3

S4

S5

S6

Vote
(root)

Vote Decide Commit

Distributed
(root) S1

S2

S3

S4

S5

S6

Vote
(root)

Vote Commit

Figure 4 Two-phase commit-based orchestration of a transaction τ with shards(τ) = {S1, . . . ,S6}, in which S1, S2, S3, and S4

have vote-steps, S2, S5, and S6 have commit steps, and S3 has an abort-step. Every dot represents a single consensus step, every
arrow a single cluster-sending step, and every dashed arrows a cluster-sending step used to set up distributed waiting.

step Abort(S). All shards S that receive a global abort
vote and voted abort, can ignore this vote. All shards
S that receive a global abort vote and voted commit,
execute Abort(S) in parallel. Finally, we can eliminate
the commit-step or abort-step for Sr, as these steps can
be processed at the same time as the global vote. We
illustrated centralized orchestration in Figure 4, middle.

We notice that, in the worst case, the root Sr will re-
ceive n = |shards(τ)|−1 votes. For efficiency, we cannot
use separate consecutive consensus steps at Sr to pro-
cess each of these incoming votes: if we would use con-
secutive consensus steps, then receiving these n votes
will take worst-case almost-as-long as the steps taken by
linear orchestration to perform vote-steps at n shards
in sequence. Next, we shall show that we can process
these at-most |shards(τ)| − 1 votes using only a single
consensus decision at Sr:

Lemma 1 Let τ be a transaction and let shard Sr be
the root that receives commit and abort votes of n other
shards. Shard Sr will receive votes via n cluster-sending
steps and can reach a commit or abort decision in at-
most a single consensus step at Sr.

Proof Consider Sr receiving votes v1, . . . , vn and let
r1,r2 ∈ Sr. Both replicas receive votes via cluster-
sending and register them in some, possibly distinct,
order. Independent of the order in which r1 and r2

receive votes, they will both receive the set of votes
{v1, . . . , vn}, receive na abort votes, and nc commit
votes, na + nc = n. Hence, eventually, r1 and r2 can
derive the same global commit or abort decision for τ :
we do not need to enforce a particular ordering in which
votes are processed by replicas in Sr to agree on this
decision. We still need to enforce that all replicas in
Sr process this global abort or commit decision for τ

in the same order, however. To do so, each replica in
Sr waits until it receives all votes, after which it will
use the mechanisms provided by the consensus proto-
col to trigger a single consensus step (e.g., in Pbft by
forcing the primary to initiate such step) that reaches

agreement on a round in which Sr continues process-
ing τ (resulting in the global abort or commit decision
being shared with other shards).

In a similar way, shards can process global abort
votes with at-most one consensus step. Let Si, 1 ≤ i ≤
n, be a shard. If Si voted abort, then every replica in Si

is aware of this vote and can ignore the incoming global
abort vote. If Si voted commit, then every replica in
Si can use the mechanisms provided by the consensus
protocol to reach agreement on a round in which Si can
execute Abort(Si). Finally, if a shard S ∈ shards(τ) re-
ceives a global commit vote, then every replica in S can
use the mechanisms provided by the consensus protocol
to reach agreement on a round in which Si can execute
Commit(Si). We conclude:

Theorem 2 Let τ be a transaction with nv vote-steps,
nc commit-steps, and na abort-steps. Using centralized
orchestration, τ can be committed (aborted) in exactly
four consecutive consensus steps using nv+nc+1 (using
nv + na + 1) consensus steps and using 2(nv − 1) + nc

(using 2(nv − 1) + na)) cluster-sending steps.

Proof Assume that τ is committed. In this case, the
root Sr first performs its vote-step. Then, all nv − 1

other vote-steps are performed in parallel, resulting in
nv − 1 commit votes sent to Sr. Next, using Lemma 1,
these commit-votes are processed by Sr using one con-
sensus step. Finally, as the fourth consecutive step, all
nc commit-steps are performed in parallel. Hence, we
use nv + nc + 1 consensus steps, we use (nv − 1) + nc

cluster-sending steps to forward execution, and nv − 1

cluster-sending steps to send commit votes. The case in
which τ is aborted is analogous.

4.3 Distributed orchestration

Centralized orchestration requires four consecutive con-
sensus steps. Next, we propose a method for parallelized



ByShard: Sharding in a Byzantine Environment 9

orchestration based on the traditional distributed two-
phase commit protocol (Distributed-2PC) [42] that only
requires three consecutive consensus steps. We do so by
instructing every shard to not just send its vote for com-
mit or abort to the root, but instead broadcast this vote
to all shards with either commit-steps or abort-steps.

Let Sr,S1, . . . ,Sn be an ordering of all shards Sr,

S1, . . . ,Sn ∈ shards(τ) with vote-steps, let Sr be the
root for τ , let W ⊆ shards(τ) be all shards with either a
commit-step or an abort-step, and let Si, 1 ≤ i ≤ n, be
a shard with a vote-step. Instead of sending the com-
mit or abort vote resulting from Vote(Si) to Sr, Si

sends the resulting vote to all other shards in W . If
S ∈ (W ∩ {S1, . . . ,Sn}) voted abort, then it can ignore
all votes. Let S ′ ∈ W be a shard that did not vote
abort. If S ′ has a commit-step, then it proceeds with
executing Commit(S ′) after it receives n commit votes.
If S ′ has an abort-step, then it proceeds with execut-
ing Abort(S ′) after it receives a single abort vote. In
all other cases, S ′ can ignore the votes. We illustrated
distributed orchestration in Figure 4, right.

To assure that each shard in W knows what to do
with the votes it receives for τ , the root of τ will not only
forward execution to S1, . . . ,Sn with the instruction to
vote, but also to all shards in W with the instruction to
wait for votes of shards S1, . . . ,Sn (the wait instructions
also implicitly represent the commit vote of the root
itself). As with the processing of votes, no consensus
step is necessary at the shards in W to process these
wait instructions. We conclude the following:

Theorem 3 Let τ be a transaction with nv vote-steps,
nc commit-steps, and na abort-steps. Using distributed
orchestration, τ can be committed (aborted) in exactly
three consecutive consensus steps using nv + nc (using
nv+na) consensus steps and using nv(na+nc)+(nv−1)

(using nv(na + nc) + (nv − 1)) cluster-sending steps.

Proof Assume that τ is committed. In this case, the
root Sr first performs its vote-step and sends its commit
vote to na+nc shards. Next, all nv−1 other vote-steps
are performed in parallel, resulting in nv − 1 commit
votes sent to na+nc shards (a total of (nv−1)(na+nc)

commit votes). Finally, as the third consecutive step,
each shard with a commit-step can use the techniques of
the proof of Lemma 1 to process the incoming nv com-
mit votes and the resulting commit-step using one con-
sensus step. Likewise, each shard with only an abort-
step can ignore the commit votes without any consen-
sus steps. Hence, we use nv + nc consensus steps, we
use nv − 1 cluster-sending steps to forward execution,
and nv(na + nc) cluster-sending steps to send commit
votes. The case in which τ is aborted is analogous.

Remark 1 We can eliminate the role of the root and re-
duce distributed orchestration to two consecutive con-
sensus steps, this similar to how Chainspace [1] and
PCerberus [25] work. This approach requires reliable
clients or recovery mechanisms to deal with faulty client
behavior, however. As these recovery mechanisms have
similar complexity to the three-step distributed orches-
tration we present here, we do not separately investigate
such a two-step design.

5 Providing execution

Let τ be a multi-shard transaction. The second part
of processing τ is to execute τ by updating any data
affected by τ at the shards in shards(τ). As part of ex-
ecution, one can incorporate steps to assure an isolated
execution of τ , which makes it easier to maintain data
consistency. Notice that single-shard steps are ordered
via consensus and executed sequentially at the level
of a shard. Hence, individual reads and writes always
happen in full isolation, guaranteeing write uncommit-
ted execution (degree 0 isolation) [4,5]. As multi-shard
transactions can have several shard-steps, the process-
ing of several multi-shard transactions can result in in-
terleaved execution of these transactions. Hence, if fur-
ther isolation is necessary for the application, then the
execution method needs to incorporate some form of
concurrency control. To provide concurrency control,
we will describe how two-phase locking can be expressed
in OEM, this without introducing additional consen-
sus or cluster-sending steps. Using two-phase locking,
ByShard provides execution with various degrees of
isolation, e.g., serializable execution (degree 3), read
committed execution (degree 2), and read uncommitted
execution (degree 1) [4,5,22]. As a baseline, we also de-
scribe two basic lock-free execution methods that only
provide degree 0 isolation.

To illustrate execution, we formalize the account-
transfer data and transaction model of preceding exam-
ples. For this purpose, we assume that each transaction
τ is a pair (C,M) in which C is a set of constraints of
the form

Con(X, y) = “the balance of X is at least y”

and M a set of modifications of the form

Mod(X, y) = “add y to the balance of X”.

We write C(S) and M(S) to denote the constraints
and modifications in C and M , respectively, that af-
fect accounts maintained by S. Semantically, a system
commits to τ only if all constraints in C hold, in which
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case all modifications in M are applied to the system.
Notice that these minimalistic account-transfer trans-
actions are sufficient to represent all transactions in pre-
ceding examples. In Section 7, we discuss why this min-
imalistic account-transfer data and transaction model
is representative for general-purpose workloads for re-
silient data management systems.

5.1 Isolation-free direct execution

First, we propose a basic execution method with mini-
mal isolation by formalizing the isolation-free execution
method employed in the linearly orchestrated process-
ing plan of Example 5.

Let τ = (C,M) be a transaction with S ∈ shards(τ).
Shard S needs a vote-step whenever constraints need to
be checked at S (C(S) ̸= ∅). This vote-step σ checks
whether all constraints in C(S) hold. If these constraints
hold, then σ makes a commit vote. Otherwise, σ makes
an abort vote. To avoid a separate commit-step for τ at
S, we optimistically assume that τ will not abort and let
the vote-step σ perform all modifications in M(S) after
it voted commit. When the transaction gets aborted, we
need to roll back any modifications made by σ. Hence, if
M(S) ̸= ∅, we also construct an abort-step Abort(S)
that rolls back all modifications in M(S) by performing
the modifications {Mod(X, -y) | Mod(X, y) ∈ M(S)}.

If S only has modifications (C(S) = ∅), then S only
needs a commit-step that performs all modifications in
M(S).

The main strength of isolation-free execution is the
minimal amount of shard-steps it produces: if a trans-
action is committed, then each shard will only execute
a single shard-step (a vote-step if there are constraints,
a commit-step otherwise). Unfortunately, isolation-free
execution provides only degree 0 isolation, which can
lead to violations of constraints on the data in many
applications:

Example 7 Consider the sharded banking example of
Example 4. Assume that the system does not allow neg-
ative account balances and consider transactions

τ1 = Con(A, 100),Con(B, 700),

Mod(A, 400),Mod(B, -400);

τ2 = Con(A, 500),Mod(A, -300),Mod(E, 300),

and their isolation-free linearly orchestrated execution
illustrated in Figure 5. As one can see, the balance of
A will become negative, breaking the constraint put in
place. This is caused by operation Con(A, 500) of τ2,
which performs a so-called dirty read [5,42].

A $100
B $300
E $0

τ1:Sa−−−−−−−−−→
Con(A,100)
Mod(A,400)

A $500
B $300
E $0

τ2:Sa−−−−−−−−−→
Con(A,500)
Mod(A,-300)

A $200
B $300
E $0

τ1:Sb−−−−−−−−−−→
Con(b,700)

(decide abort)

A $200
B $300
E $0

τ1:Sa−−−−−−−−−→
Mod(A,-400)

(abort)

A -$200
B $300
E $0

τ2:Se−−−−−−−−−→
Mod(E,300)

A -$200
B $300
E $300

Figure 5 Evolution of the current state while step-wise execut-
ing the transactions of Example 7.

As isolation-free execution provides minimal isola-
tion, it is unable to prevent phenomena such as dirty
reads that can lead to data inconsistencies. Isolation-
free execution does provide atomicity, however: either
all or none of the modifications of a transaction are
permanent. One way to deal with constraint violations
such as in Example 7 is by assuring that roll backs do
not invalidate constraints in a domain-specific manner.
To illustrate this, assume we want to assure that ac-
counts never have negative balances.

On the one hand, rolling back Mod(X, y) with y ≤ 0

(a removal) will increase the balance of X and, hence,
will never make the balance of X negative. Consequently,
these modifications are safe. Furthermore, notice that
if Con(X, -y) and Mod(X, y), y ≤ 0, are part of a sin-
gle vote-step, then they are executed in isolation as a
single unit and, hence, the modification will never make
the balance negative (this pattern of constraint check-
ing and removing of balance can be seen as a lock on
available resources, whereas rolling back the removal is
a release of unused resources).

On the other hand, rolling back Mod(X, y) with
y ≥ 0 (an addition) will decrease the balance of X

and, hence, can make the balance of X negative. Conse-
quently, these modifications are unsafe. To assure that
unsafe modification do not invalidate constraints, one
can perform these modifications when committing (via
a commit-step). This means that, in the worst case, ev-
ery affected shard must execute two shard-steps when
committing: the vote-step checks constraints and per-
forms safe modifications (which, on abort, are rolled
back via the abort-step) and the commit-step performs
unsafe modifications. We refer to this execution method,
in which safe modifications are part of vote-steps and
unsafe modifications are part of commit-steps (hence,
executed safely), as safe isolation-free execution.
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5.2 Lock-based execution

Although safe isolation-free execution is able to main-
tain some data consistency, it does so in an domain-
specific manner that cannot be applied to all situations.
As a more general-purpose method towards maintain-
ing data consistency, we can enforce higher isolation lev-
els for transaction processing, e.g., degree 3 (serializable
execution). The standard way to do so in a multi-shard
environment is by using two-phase locking [4,42]. First,
we describe the working of two-phase locking. Then,
we discuss how to implement two-phase locking with
minimal coordination in a Byzantine environment.

Consider a multi-shard transaction τ . When execut-
ing τ , τ needs to obtain a read lock on each data item D

before it reads D and a write lock on each data item D

before it writes D. Several transactions can hold a read
lock on D at the same time, while write locks on D are
exclusive: if τ ′, τ ′ ̸= τ , holds a write lock on D, then τ

cannot obtain any locks on D, and if τ ′, τ ′ ̸= τ , holds
a read lock on D, then τ cannot obtain a write lock on
D, but can obtain a read lock on D. When τ cannot
obtain a lock on D that it needs, it simply waits until
previous transactions finish and release their locks on
D. To provide serializability, τ is barred from obtain-
ing new locks after releasing any locks: this assures that
there is a point in time where τ is the only transaction
that holds all write locks on data items affected by τ ,
at which point τ can make any changes to these data
items in an indivisible atomic manner.

To avoid deadlocks when using these blocking locks,
we enforce that each transaction locks data items in ex-
actly the same order [42]. To minimize the number of
shard-steps, we assume a fixed order on shards and on
data items within shards, and obtain all locks in that
order. Consequently, ByShard requires linear orches-
tration when using blocking locks.

Example 8 Consider the sharded banking example of
Example 4 and the transaction

τ = “if Ana has $500 and Bo has $300 then
move $200 from Ana to Ben”.

Assume that shards are ordered as Sa, . . . ,Sz and that
accounts are ordered on account holder name. To exe-
cute this transaction, we first obtain a write lock on the
account of Ana in Sa, then a write lock on the account
of Ben in Sb, and, finally, a read lock on the account of
Bo in Sb.

Let τ = (C,M) be a transaction, let S ∈ shards(τ),
and let Accounts(S), defined by

{X | Con(X, y) ∈ C(S) ∨ Mod(X, y) ∈ M(S)},

be the set of accounts affected at S. During the vote-
step Vote(S), we acquire a lock Lock(X) for every
account X ∈ Accounts(S) in some predetermined
order. If there is a Mod(X, y) ∈ M(S), then we ac-
quire a write lock for X. Otherwise, we acquire a read
lock. After acquiring the lock on X, we check any con-
straint Con(X, y) ∈ C(S). If a constraint does not
hold, then Vote(S) votes abort and releases all locks
already acquired in S. We purposely check these con-
straints as soon as possible to minimize the amount of
time locks are held. Otherwise, if all constraints hold,
then Vote(S) votes commit. Next, the commit-step
Commit(S) performs all modifications M(S) followed
by performing Release(X) to release all locks in S
for all accounts X ∈ Accounts(S). Finally, the abort-
step Abort(S) performs Release(X), for all accounts
X ∈ Accounts(S), to release all locks in S. We have:

Theorem 4 Let τ be a transaction with n = |shards(τ)|.
To process τ using two-phase locking, we need n vote-
steps to obtain all locks, followed by n−1 commit-steps
or abort-steps to release all locks. Hence, τ can be pro-
cessed using 2n− 1 consensus steps and 2n− 2 cluster-
sending steps.

Proof To prove the theorem, we only need to prove that
vote-step Vote(S) of shard S ∈ shards(τ) can obtain
all its locks using only a single consensus step at S.
Execution of Vote(S) starts after S reached consensus
on this step, and we will prove that no further consen-
sus steps for Vote(S) are required. Let Vote(S) =

{. . . ,Lock(X), . . . }. During execution of Vote(S), we
distinguish two possible cases:

1. The lock on X can be obtained, in which case exe-
cution of Vote(S) continuous.

2. The lock on X cannot be obtained. In this case,
execution of Vote(S) needs to wait until the lock on
X can be obtained. To do so, as part of the execution
of Vote(S), every replica r ∈ S puts (τ,Vote(S))
on a wait-queue Qr(X).

Let r1,r2 ∈ S. We assume that wait-queues Qr1
(X)

and Qr2(X) operate deterministic: if the same oper-
ations are applied to Qr1

(X) and Qr2
(X), then the

queues always yield the same results. Now consider the
case in which the lock on X cannot be obtained. Let τ ′,
τ ̸= τ ′, be the transaction that is holding the lock on
X and let σ = {. . . ,Release(X), . . . } be the commit-
step or abort-step of τ ′ for shard S. During execution,
shard-step σ will release the lock on X. When doing
so, each replica r ∈ S wakes up transactions in Qr(X)

for execution directly after shard-step σ. We distinguish
two cases:
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1. The next transaction in Qr(X) wants to obtain a
read lock, while τ ′ held a write lock. In this case,
wake up all transactions in queue order in Qr(X)

that want to obtain a read lock (all these transac-
tions can hold the non-exclusive read lock at the
same time).

2. The next transaction in Qr(X) wants to obtain a
write lock. If τ ′ was the last transaction holding any
lock on X, then we wake up the next transaction (as
this transaction requires an exclusive write lock).

This wake up step is part of the deterministic execution
of σ and wake-up queues operate deterministic. Hence,
no consensus steps are necessary to determine which
transactions need to be executed next and to initiate
execution of these next transactions.

We notice that we cannot always minimize the num-
ber of affected shards while processing τ via two-phase
locking:

Example 9 Consider the sharded banking example of
Example 8 and the transaction τ = “if Bo has $500,
then move $200 from Bo to Ana”. Due to the ordering
on shards and accounts used, we always first need to
obtain a write lock on the account of Ana (in shard Sa)
before we can inspect the balance of Bo (in shard Sb),
even if Bo does not have sufficient balance. This is in
contrast with the isolation-free execution methods, as
these methods can first inspect the balance of Bo and
directly abort execution (without touching shard Sa).

Locking and other isolation levels The strength of two-
phase locking is that it provides serializability. The down-
side is that it can cause large transaction processing
latencies whenever contention is high:

Example 10 Consider a system in which consensus steps
take t = 30ms each, while all other steps take negligi-
ble time (see Example 1). We consider transactions τ1
and τ2 such that τ1 writes to data items D1, . . . , D10

that are held in shards S1, . . . ,S10, respectively, while
τ2 only writes to data item D1. Transaction τ1 executes
first at S1 and obtains the write lock on D1. Next, τ2
executes at S1, cannot obtain the write lock on D1, and
has to wait until τ1 finishes execution and releases the
lock on D1. To do so, τ1 has to first obtain locks in m−1

shards, after which it can return to S1 to release the lock
on D1. Hence, τ1 has to perform m consecutive consen-
sus steps. Even if τ1 can obtain the locks on D2, . . . , D10

immediately, it will take at least 10t = 300ms before τ2
can resume execution, even though the actual execution
of τ2 would only take t = 30ms.

One way to partially deal with Example 10 is by not
imposing degree 3 isolation (serializable execution), and

the primitives we propose to provide degree 3 isolation
can easily be used to provide lower levels of isolation [4,
5,22]. For example:

1. in read uncommitted execution (degree 1 isolation),
no read locks are obtained on any data item (while
write locks are used in the usual way), thereby re-
ducing lock contention sharply for read-heavy work-
loads; and

2. in read committed execution (degree 2 isolation),
read locks on each data item D are released directly
after reading D (while write locks are used in the
usual way), thereby minimizing the time read locks
are held.

Non-blocking locks Using lower isolation levels only par-
tially mitigates the issues illustrated in Example 10. To
further deal with this, one can opt to replace waiting
by failing : whenever a lock cannot be obtained by a
transaction τ , τ aborts. This approach guarantees that
processing latencies of transactions and resource utiliza-
tion at the replicas are kept in check in periods of high
contention, this at the cost of aborted transactions that
could otherwise be successfully executed. As these non-
blocking locks will never cause deadlocks, these locks
can be obtained in any order, enabling their usage in
combination with all orchestration methods.

6 Performance evaluation

In the previous sections, we introduced ByShard as a
framework for sharded resilient systems. As part of this
framework, we also presented general-purpose methods
by which ByShard can orchestrate and execute multi-
shard transactions. Combining these methods results in
eighteen multi-shard transaction processing protocols
that each make their own trade-offs between perfor-
mance, isolation level, latency, and abort rates. Further-
more, protocols used by contemporary sharded resilient
systems such as AHL [11] and Chainspace [1] can
also easily be expressed within the orchestrate-execute
model of ByShard. We refer to Table 1 for an analyt-
ical comparison of each of these twenty protocols.

Remark 2 In practical deployments of ByShard, end-
users only need to use one of these eighteen multi-shard
transaction processing protocols. In our experiments,
we use such single-protocol deployments, as we are in-
terested in the differences between the protocols. This
does not rule out deployments of ByShard that use
several protocols simultaneously: ByShard does sup-
port the usage of several protocols at the same time
such that users can select the appropriate isolation level
for individual transactions.
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Table 1 Overview and comparison of the eighteen multi-shard transaction processing protocols of ByShard and of the multi-shard
transaction processing protocols of AHL [11] and Chainspace [1].
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To gain further insight in the performance attain-
able by sharded resilient systems, we implemented the
ByShard framework, the orchestrate-execution model,
and the eighteen multi-shard transaction processing pro-
tocols obtained from the presented orchestration an ex-
ecution methods. For comparison, we also implemented
the protocol of AHL [11], which has a novel design that
is most similar to the design of our Centralized, Seri-
alizable, non-blocking protocol CSnb, the main differ-
ence being that AHL uses a dedicated reference com-
mittee to coordinate processing of multi-shard transac-
tions, whereas in CSnb each transaction is coordinated
by a root-shard chosen from the set of shards affected
by that transaction. Our implementation of AHL is
granted a dedicated extra shard for use as the refer-
ence committee. Finally, we note that the design of our
Distributed, Serializable, non-blocking protocol DSnb
is a generalization of the design of Chainspace [1]. We
refer to Remark 1 for further details on the relation-
ship between the three-step design of DSnb and the
two-step design of Chainspace.

Next, we deployed our implementation on a simu-
lated sharded resilient system. In specific, we abstract
the operations of consensus and cluster-sending, while
deploying full shards that execute all replica-specific
operations necessary for transaction orchestration and
execution. This deployment provides detailed control
over consensus and cluster-sending costs, enables fine-
grained measurements of performance metrics, and al-
lows us to deploy on hundreds of shards.2

6.1 Experimental Setup

We run experiments in which we measured the behavior
of the system as a function of eight distinct parameters.
The details on these eight experiments can be found
in Section 6.2. In each experiment, we run a workload
of 5000 transactions. Unless specified otherwise, each
transaction affects 16 distinct accounts by putting con-
straints on 8 accounts (read operations), removing bal-
ance from 4 accounts (write operations), and adding
balance to 4 accounts (write operations). The accounts
affected by these operations are chosen uniformly at
random from a set of active accounts. Each account
on each shard starts with an initial balance of 2000

and transactions add or remove 500 balance per mod-
ification (on average, these are chosen via a binomial
distribution with n = 1000 and p = 0.5). We run ex-
periments with 64 shards and 8192 active accounts (128

2 The full C++ implementation of these experiments and the
raw measurements are available at https://www.jhellings.nl/
projects/byshard/.

active accounts per shard). Finally, the experiments are
set up such that cluster-sending takes 10ms and consen-
sus decisions take at-least 30ms. To take into account
contention at individual shards, each shard can perform
up-to 1000 decisions/s (we assume a consensus protocol
with out-of-order processing, but consensus decisions
start consecutively).

The number of active accounts is low to increase
contention and the number of affected accounts per trans-
action is high to maximize complexity. This is on pur-
pose: in our experiments, we want to study how the
multi-shard transaction processing protocols we com-
pare differ in their operations and we are especially in-
terested in the performance of the system when dealing
with multi-shard transactions that require substantial
coordination to deal with contention. Indeed, in work-
loads with low contention (e.g., more active accounts),
locking has no discernible side-effects on the perfor-
mance or behavior of the system. Furthermore, in work-
loads that mainly consist of single-shard transactions,
each of the multi-shard transaction protocols we look at
will fall back to the same underlying single-shard con-
sensus protocol to effectively process such single-shard
transactions. We refer to Section 2 for details on how
single-shard transactions are processed. In each experi-
ment, we collected the following detailed measurements:

▶ The total runtime represents the elapsed real time
to process the workload.

▶ The cumulative duration represents the sum of the
transaction duration (the elapsed real time to pro-
cess that transaction) of each transaction in the
workload.3

▶ The average throughput represents the average num-
ber of transactions processed per second.

▶ The average committed throughput represents the
average number of transactions committed per sec-
ond.

▶ The committed transactions represent the number
of transactions that are committed.4

▶ The constraint failures represent the total number
of constraint checks that did not hold.5

3 The transaction duration includes waiting times (e.g., waiting
for locks to be released, waiting for votes to arrive, waiting for
a next shard-step to be executed). As many transactions can be
active in parallel (even at a single shard due to waiting), the
cumulative duration can be much higher than the product of the
number of shards and the total runtime.

4 All other processed transactions are aborted (either due to
constraint failure or, when non-blocking locks are used, the in-
ability to acquire locks).

5 Linear orchestration can only have a single constraint failure
per transaction (which will lead to an abort for that transac-
tion), while both centralized and distributed orchestration can
have many constraint failures per transaction (which will lead to
a single abort for that transaction).

https://www.jhellings.nl/projects/byshard/
https://www.jhellings.nl/projects/byshard/
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▶ The median shard-steps represent the median num-
ber of shard-steps (each representing a single con-
sensus step) performed per shard.

▶ The shard-step imbalance represent the maximum
difference between the number of shard-steps per-
formed by any two shards.

▶ The total locks represents the total number of at-
tempts to obtain a read or write lock.

▶ The failed locks represent the total number of failed
attempts to obtain a read or write lock.

▶ The total votes represent the total number of com-
mit and abort votes casts.

6.2 Experimental Details

Next, we will detail the eight experiments that we per-
formed and, per experiment, provide the main findings.

The scalability experiment In our first experiment, we
study the impact of sharding on the behavior of By-
Shard. To do so, we measured the behavior of the
system as a function of the number of shards while
keeping all other parameters the same (including the
workload and the initial dataset). Increasing the num-
ber of shards will increase the available parallel process-
ing power, while decreasing the number of accounts per
shard. Hence, we increase the average number of multi-
shard transactions and the number of shards affected
by each transaction. The results of this experiment can
be found in Figure 6.

The results show that all protocols have excellent
scalability: when the number of shards is increased, the
median amount of work per shard (consensus steps and
vote processing steps) decreases rapidly. This is espe-
cially the case when moving beyond 16 shards, as each
transaction will affect 16 accounts at at-most 16 dis-
tinct shards. Furthermore, all our eighteen multi-shard
transaction protocols show a good distribution of con-
sensus steps among all shards, as the imbalance in steps
is relatively small compared to the median steps per
shard.

Although the imbalance in steps is small, there is
a noticeable imbalance in shard-steps for the protocols
that use linear orchestration. This an unfortunate side-
effect of to the deterministic order in which vote-steps
are performed in protocols that use linear orchestration:
in these protocols, shard-steps are executed consecu-
tively (see, e.g., Theorem 1) using some deterministic
shard-ordering. The shards that appear early in this
order will have more work than the other shards (this
is especially when many transactions abort-fast), caus-
ing the observed moderate imbalance. Furthermore, we

notice that this side-effect cannot be avoided for proto-
cols that use blocking locks (without further measures
to prevent deadlocks).

When comparing protocols that use the same execu-
tion method and only differ in orchestration method, we
see that the protocol using distributed orchestration has
the lowest runtime and highest throughput, followed by
the protocol using centralized orchestration, followed by
the protocol using linear orchestration. When compar-
ing protocols that use the same orchestration method
and only differ in execution method, we see that the
protocols using execution methods that provide lower
degrees of isolation have the lowest runtime and dura-
tion, and, consequently, the highest throughput.

Furthermore, the experiment underlines the bene-
fits and drawbacks of parallel processing of shard-steps
in protocols that use the centralized and distributed
orchestration methods. On the one hand, these paral-
lel protocols have lower runtimes and transaction dura-
tions than their linear counterparts, even though par-
allel protocols perform many more steps. As a conse-
quence, parallel protocols typically are able to reach
higher throughputs than their linear counterparts. On
the other hand, the negative effects of contention are
higher in parallel protocols than in their linear counter-
parts. This results in higher rates of constraint failures
and, when lock-based execution is used, higher rates of
failed locks. These negative effects of contention reduce
the number of committed transactions (especially when
non-blocking lock-based execution is used). The high
throughput of parallel protocols can offset the negative
effects parallel processing has on contention, however:
the average committed throughput is higher for pro-
tocols that use distributed orchestration than for their
linear counterparts, even though protocols that use dis-
tributed orchestration also have the highest abort rates.

In line with the original evaluation of AHL [11, Sec-
tion 7.3], we see that the reference committee of AHL
is a bottleneck for multi-shard transaction processing:
the multi-shard transaction processing performance of
AHL is determined by the time it takes for the refer-
ence committee to perform its orchestration tasks. Due
to the high amount of multi-shard transactions in our
workload, the usage of a reference committee causes a
large imbalance in the number of shard-steps performed
by the reference committee and by other shards. Due
to these observations, the scalability of AHL for multi-
shard transaction workloads is limited. As AHL relies
on the reference committee, transactions are less likely
to content for the same locks, however. Consequently,
the impact of contention is lower in AHL than in sim-
ilar protocols in ByShard, e.g., the protocols that use
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Figure 6 Measurements for the scalability experiment using nineteen multi-shard transaction processing protocols. In this experiment,
we measured the behavior of the system as a function of the number of shards. We used a fixed dataset with 8192 active accounts and
a fixed workload of 5000 transactions (each affecting 16 accounts).

centralized orchestration, due to which AHL has lower
abort rates than the centralized protocols of ByShard.

The contention experiment In our second experiment,
we study the impact of contention on the behavior of
ByShard. To do so, we measured the behavior of the
system as a function of the number of active accounts
per shard. For each case, we generate appropriate work-
loads as a function of the number of active accounts in
the system. Increasing the number of active accounts
decreases the probability that two transactions affect
the same account and, hence, decreases contention. The
results of this experiment can be found in Figure 7.

The results further underline the large impact con-
tention has on parallel protocols: we see that a decrease
in contention always causes a decrease in constraint
failures and lock failures. This effect is sharpest in the
parallel protocols. Consequently, parallel protocols see
the strongest improvement in the number of commit-
ted transactions and the average committed throughput

when contention decreases. Finally, we see that proto-
cols that use lock-based execution with blocking locks,
which have exceptionally high commit rates in all cases,
have good runtimes and excellent scalable performance
whenever contention is low.

The factor-scalability experiment In our third experi-
ment, we study the impact of scaling the system on
the behavior of ByShard. To do so, we measured the
behavior of the system as a function of the number of
shards and, as we keep the number of active accounts
per shard constant, the number of active accounts. For
each case, we generate appropriate workloads as a func-
tion of the number of accounts in the system. As in the
scalability experiment, increasing the number of shards
increases the available parallel processing power. Fur-
thermore, increasing the number of accounts decreases
contention. The results of this experiment can be found
in Figure 8.
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Figure 7 Measurements for the contention experiment using nineteen multi-shard transaction processing protocols. In this experi-
ment, we measured the behavior of the system as a function of the number of accounts per shard. We used 64 shards and a workload
of 5000 transactions (each affecting 16 accounts).

The results underline the findings of the previous
two experiments. Furthermore, we see that scaling up
the system by increasing the number of shards that each
hold a constant amount of active accounts sharply in-
creases transaction throughput and committed transac-
tion throughput, as scaling the system sharply reduces
the amount of work per shard and—due to the increase
in accounts—the contention (and its negative effects on
the amount of committed transactions).

The account skew experiment We inspect the impact
of skew on the behavior of ByShard. To do so, we
measured the behavior of the system as a function of
the skew in the accounts affected by the transactions
in the workload, while keeping all other parameters the
same (including the number of shards and the initial
dataset). For each case, we generate appropriate work-
loads in which accounts affected by the transactions in
the workload are chosen via a geometric distribution
with p = f/8192, where f ∈ {2, . . . , 10} is the skew

factor (instead of a uniform distribution). In practice,
this implies that the most likely account has probability
f/8192 to be chosen (instead of 1/8192). The results of
this experiment can be found in Figure 9.

As higher skew causes higher contention, the results
show that increasing the skew increases the negative
impacts of contention, especially when blocking locks
are used. Consequently, the results of this experiment
underline the observations made in the other experi-
ments in the paper. Based on the results, we make
the following final observations: we see that the neg-
ative impacts of skew are highest in protocols that use
centralized orchestration or distributed orchestration,
especially when looking at cummulative duration. We
believe this is due to the increase in shard-step imbal-
ance when increasing skew, which is due to more trans-
actions involving shards that hold the accounts with
the highest skew. Consequently, the protocols that use
linear orchestration are able to outperform their cen-
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Figure 8 Measurements for the factor-scalability experiment using nineteen multi-shard transaction processing protocols. In this
experiment, we measured the behavior of the system as a function of the scalability-factor by which the number of accounts and
shards grow. We used a workload of 5000 transactions (each affecting 16 accounts).

tralized and distributed counterparts when the skew is
sufficiently high.

The local-global experiment In our fifth experiment, we
study the impact of multi-shard transactions on the be-
havior of ByShard. To do so, we measured the behav-
ior of the system as a function of the percentage of global
(multi-shard) transactions in the workload while keep-
ing all other parameters the same (including the num-
ber of shards and the initial dataset). For each case, we
generate appropriate workloads that mix local (single-
shard) transactions with the required number of global
transactions. Local transactions are generated such that
they affect a consecutive set of 16 accounts in their lo-
cal shard. The results of this experiment can be found
in Figure 10.

The results show that the cost of coordinating multi-
shard transactions (e.g., in terms of steps, failed locks,
and votes) scales proportional with the percentage of
multi-shard transactions (that affect more shards and,

hence, perform more steps than local transactions). Con-
sequently, increasing the percentage of multi-shard trans-
actions generally decreases performance. At the same
time, the experiment confirms that AHL has excellent
scalability on workloads with a high amount of single-
shard transactions.

The constraint failure experiment In our sixth experi-
ment, we inspect the impact of constraint failures on
the behavior of ByShard. To do so, we measured the
behavior of the system as a function of the initial bal-
ance, while keeping all other parameters the same (in-
cluding the number of shards and the workload). By
increasing the initial balance of accounts, we increase
the number of transactions that can successfully remove
balance from accounts and, hence, decrease the number
of transactions that will experience constraint failure.
Consequently, an increase in initial balance increases
the number of transactions that can commit. The re-
sults of this experiment can be found in Figure 11.
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Figure 9 Measurements for the account skew experiment using nineteen multi-shard transaction processing protocols. In this exper-
iment, we measured the behavior of the system as a function of the skew-factor of transactions. We used a fixed initial dataset with
8192 active accounts, 64 shards, and a workload of 5000 transactions (each affecting 16 accounts).

The results show that increasing the initial balance
will increase the number of committed transactions and
the average committed throughput. This is easily ex-
plained: an increase in the initial balance increases the
number of balance removals each account can process
before conditions will fail. Hence, an increase of initial
balance will causes a sharp decrease in the number of
constraint failures and, as such, will cause an accom-
panying increase in the number of committed trans-
actions. As constraint failures are the only reason why
transactions fail to commit in protocols that use isolation-
free execution, increasing the initial balance (and de-
creasing the likelihood of constraint failures) massively
improves performance of these protocols in terms of
committed transactions and average committed through-
put. Furthermore, as increasing the initial balance re-
duces the likelihood of constraint failure, we see an
accompanying increase in the number of shard-steps.
This is especially the case for protocols that use lin-
ear orchestration, as these protocols all have the ability

to abort-fast at every vote step. As parallel protocols
only have limited options to abort-fast (as only the root
shard can abort the entire transaction before initiating
any other vote-steps), a reduction in the likelihood of
constraint failure is accompanied by a more moderate
increase in the number of shard-steps in these protocols.

The read-write experiment In our seventh experiment,
we inspect the impact of write-heavy transactions on
the behavior of ByShard. To do so, we measured the
behavior of the system as a function of the number of
affected accounts that are modified by each transaction
in the workload while keeping all other parameters the
same (including the number of shards and the initial
dataset). For each case, we generate appropriate work-
loads in which each transaction affects 16 accounts of
which ζ accounts are modified: each such transaction
will put constraints on 16 − ζ accounts (read opera-
tions), remove balance from ζ/2 accounts (write oper-
ations), and add balance to ζ/2 accounts (write opera-
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Figure 10 Measurements for the local-global experiment using nineteen multi-shard transaction processing protocols. In this exper-
iment, we measured the behavior of the system as a function of the percentage of global (multi-shard) transactions. We used a fixed
initial dataset with 8192 active accounts, 64 shards, and a workload of 5000 transactions (each affecting 16 accounts).

tions). The results of this experiment can be found in
Figure 12.

The results show the impact of reads and writes on
the lock-based protocols: we see that an increase in the
number of accounts written to also increases the overall
costs of all protocols that utilize lock-based execution.
This is as expected, as an unlimited number of trans-
actions can hold a read lock while only one transaction
can hold a write lock on an account (during which no
other transactions can obtain locks on that account),
write locks are more costly than read locks and are more
prone to causing lock failures.

At the same time, we see that write-heavy workloads
have a secondary negative impact on performance: an
increase of the number of accounts that are written to
also increases the likelihood of accounts to have their
balance decreased. Hence, increasing the number of ac-
counts that are written to increases the likelihood of
constraint failures and, consequently, decreases the num-

ber of committed transactions and the average commit-
ted throughput.

The transaction size experiment In our eighth and final
experiment, we study the impact of the transaction size
on the behavior of ByShard. To do so, we measured
the behavior of the system as a function of the number
of accounts affected by each transaction in the workload
while keeping all other parameters the same (including
the number of shards and the initial dataset). For each
case, we generate appropriate workloads: in the work-
load in which each transaction affects ζ accounts, each
such transaction will put constraints on ζ/2 accounts
(read operations), remove balance from ζ/4 accounts
(write operations), and add balance to ζ/4 accounts
(write operations). Notice that increasing the number
of affected accounts also can increase the number of
affected shards per transaction. The results of this ex-
periment can be found in Figure 13.
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Figure 11 Measurements for the constraint failure experiment using nineteen multi-shard transaction processing protocols. In this
experiment, we measured the behavior of the system as a function of the initial balance. We used 64 shards, 8192 accounts, and a
fixed workload of 5000 transactions (each affecting 16 accounts).

The results show the obvious impact of transaction
size on performance: increasing the transaction size in-
creases the overall cost of all ByShard protocols in
terms of runtime, duration, steps, shard-steps, locks,
and votes. Consequently, increasing the size of trans-
actions decreases the average throughput and the av-
erage committed throughput. Furthermore, increasing
the transaction size increases the imbalance in shard-
steps for the protocols that use linear orchestration. As
explained in the scalability experiment, this is a side-
effect of the deterministic order in which vote-steps are
performed in the protocols that use linear orchestration,
and this side-effect cannot be avoided for protocols that
use blocking locks (without further measures to prevent
deadlocks).

We also see that the protocols that use blocking lock
are most impacted by an increase in transaction size, as
not only the overall amount of shard-steps per transac-
tions increases, but also the wait times for each failed

lock. Furthermore, an increase in the transaction size
increases the number writes and, similar to the previous
experiment, increases the number of constraint failures
and decreases the number of committed transactions
and the average committed throughput.

7 Discussion and related work

There is abundant literature on the design and imple-
mentation of distributed systems, distributed databases,
and sharding (e.g., [42,48,47]). Furthermore, there is
also abundant literature on resilient systems and con-
sensus (e.g., [6,7,10,12,38,54]). Next, we shall focus on
the design decisions made by ByShard and compare
them to the few works that deal with sharding in re-
silient systems.

Workloads in resilient systems We used a rather simple
account-transfer data and transaction model through-
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Figure 12 Measurements for the read-write experiment using nineteen multi-shard transaction processing protocols. In this exper-
iment, we measured the behavior of the system as a function of the number of affected accounts that are modified. We used a fixed
initial dataset with 8192 active accounts, 64 shards, and a workload of 5000 transactions (each affecting 16 accounts).

out this paper. Still, all principles outlined in this paper
can be applied to any data and transaction model in
which transactions are one-shot transactions: for more
complex transactions, the data necessary for execution
can be exchanged between the affected shards along-
side votes. The main limitation of this approach is the
total amount of all data, which depends highly on the
type of workloads. This approach is not optimal for all
workloads, however. Take, for example, evaluating com-
plex joins between tables held in distinct shards, which
will require huge data transfers. We believe that de-
veloping efficient sharded query evaluation algorithms
for permissioned blockchains with low costs in terms
of resilient primitives and exchanged data is a major
direction for future work.

We have not considered interactive transactions that
require back-and-forth steps by clients and the system.
Although such interactive transactions are supported
by some traditional data management systems, we be-
lieve that they are ill-suited for resilient systems: as

illustrated in Example 1, interactive transaction pro-
cessing in resilient systems would be costly and unre-
sponsive due to the high cost of the individual consensus
steps required to process each back-and-forth step.

The general-purpose data and transaction model
used by ByShard is in contrast with the more restric-
tive UTXO-based data models that Chainspace [1]
and Cerberus [25] utilize to their advantage to pro-
vide consistent transaction execution when dealing with
contention and Byzantine behavior.

ByShard and decentralized sharding The design of the
eighteen multi-transaction protocols of ByShard are
decentralized : there is no central coordinator that is as-
signed the task to coordinate execution of all multi-
shard transactions. This is in contrast with systems
such as AHL [11] that use a reference committee to
coordinate execution of all multi-shard transactions.
This difference between ByShard and AHL is not
fundamental, however, as the multi-shard transaction
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Figure 13 Measurements for the transaction size experiment using nineteen multi-shard transaction processing protocols. In this
experiment, we measured the behavior of the system as a function of the percentage of global (multi-shard) transactions. We used a
fixed initial dataset with 8192 active accounts, 64 shards, and a workload of 5000 transactions (each affecting 16 accounts).

protocol of AHL can easily be expressed within the
orchestrate-execute model of ByShard.

As shown in Section 6, the usage of a central co-
ordinator (e.g., reference committees) can significantly
reduce contention while providing good scalability for
single-shard workloads. At the same time, the usage of
a central coordinator introduces bottlenecks when pro-
cessing workloads with many multi-shard transactions.

The usage of Byzantine primitives To maximize the
throughput of a sharded resilient system, we have to as-
sure that standard performance-enhancing techniques
can be applied at the single-shard level. This is espe-
cially true for out-of-order processing [9,11,19], which
can increase consensus throughput in consensus-based
systems by several orders of magnitudes (see Exam-
ple 1). In ByShard, we assured that such performance-
enhancing techniques are easily applicable by utilizing
standard Byzantine primitives as basic building blocks.

This is in contrast with recent systems such as Ca-
per [2] and SharPer [3] that minimize the duration of
multi-shard transaction processing. To do so, these sys-
tems process each multi-shard transactions via a single
transaction-specific multi-shard-aware consensus step,
which reduces the number of consecutive consensus steps
to an absolute minimum. However, such designs have
difficulties dealing with contention, while making it non-
trivial to apply standard performance-enhancing tech-
niques such as out-of-order processing.

As ByShard relies on standard Byzantine primi-
tives, the design of ByShard is highly flexible and can
easily be tuned towards specific applications, e.g., by
providing only crash-fault tolerance by using the Paxos
consensus protocol, by minimizing communication costs
by using the HotStuff consensus protocol, and so on.

Sharding in permissionless blockchains In parallel to
the development of traditional resilient systems, there
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has been promising work on cross-blockchain coordina-
tion and sharding in permissionless blockchains such as
Bitcoin [39] and Ethereum [51]. Examples include
techniques that enable reliable cross-chain coordina-
tion via sidechains, blockchain relays, atomic swaps,
atomic commitment, cross-chain deals, and distributed
hash-tables [15,16,30,36,52,56,32,23,24,29]. Unfortu-
nately, permissionless blockchains remain several orders
of magnitudes slower than comparable techniques for
traditional resilient systems, due to which these permis-
sionless blockchains remain unsuitable for high-performance
data management systems.

As permissionless blockchains can provide both con-
sensus (e.g., using incentive-based consensus protocols
such as Proof-of-Work and Proof-of-Stakes) and cluster-
sending (e.g., built on top of techniques that enable reli-
able cross-chain coordination), one can apply the design
of ByShard to a permissionless setting. By doing so,
one would obtain a sharded permissionless blockchain
system with flexible multi-shard transaction processing
capabilities. We note, however, that it is not evident
to reach high performance with such a permissionless
ByShard using current permissionless techniques.

8 Conclusion

In this paper, we introduced the ByShard framework
for general-purpose sharded resilient data management
systems. Additionally, we introduced the orchestrate-
execute model (OEM) for processing multi-shard trans-
actions in ByShard. Next, we showed that OEM can
incorporate the necessary commit, locking, and execu-
tion steps required for processing multi-shard trans-
actions in at-most two consensus steps per involved
shard. Furthermore, we showed that common multi-
shard transaction processing based on two-phase com-
mit protocols and two-phase locking can be expressed
efficiently in OEM.

Our flexible design allows for several distinct ap-
proaches towards multi-shard transaction processing,
each striking its own trade-off between throughput, iso-
lation level, latency, and abort rate. To illustrate this,
we performed an in-depth comparison of the eighteen
multi-shard transaction processing protocols of the By-
Shard framework. Our results show that each pro-
tocol supports high transaction throughput and pro-
vides scalability. Hence, we believe that the ByShard
framework is a promising step towards flexible general-
purpose ACID-compliant scalable resilient multi-shard
data and transaction processing capabilities.
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