
Expressive Completeness of Two-Variable
First-Order Logic with Counting for First-Order

Logic Queries on Rooted Unranked Trees
Jelle Hellings

Department of Computing and Software
McMaster University

Hamilton, Ontario, Canada
jhellings@mcmaster.ca

Marc Gyssens
Data Science Institute

Hasselt University
Diepenbeek, Belgium

marc.gyssens@uhasselt.be

Jan Van den Bussche
Data Science Institute

Hasselt University
Diepenbeek, Belgium

jan.vandenbussche@uhasselt.be

Dirk Van Gucht
Luddy School of Informatics, Computing, and Engineering

Indiana University
Bloomington, IN, USA

vgucht@cs.indiana.edu

Abstract—We consider the class of finite, rooted, unranked,
unordered, node-labeled trees. Such trees are represented as
structures with only the parent-child relation, in addition to
any number of unary predicates for node labels. We prove
that every unary first-order query over the considered class of
trees is already expressible in two-variable first-order logic with
counting. Somewhat to our surprise, we have not seen this result
being conjectured in the extensive literature on logics for trees.
Our proof is based on a global variant of local equivalence notions
on nodes of trees. This variant applies to entire trees, and involves
counting ancestors of locally equivalent nodes.

Index Terms—finite-variable logics, counting logics, bounded
equivalence of tree nodes, bounded equivalence of trees,
Ehrenfeucht-Fraı̈ssé game, expressiveness

I. INTRODUCTION

Trees are ubiquitous in computer science and data science
and they have many applications, e.g., in databases, data struc-
tures and algorithms, program analysis, software verification,
formal language theory, and linguistics.

For these purposes, various classes of trees have been
studied: node-labeled trees, (un)ranked trees (nodes have a
fixed (arbitrary) number of children), (un)ordered (siblings are
(not) arranged in a linear order), rooted trees (there is exactly
one node without a parent), and combinations thereof.

There are numerous formalisms to describe, analyze, and
manipulate trees:

• declarative, logic-based formalisms: e.g., monadic sec-
ond order logic (MSO), first-order logic (FO), temporal
logics (LTL, CTL), and sub-logics of these, and finite-
variable logics with or without counting quantifiers;

• algebraic languages with navigational and path expres-
sions: e.g., relation algebras and XPath;

• hybrid declarative-algebraic formalisms: e.g., Condi-
tional XPath; and

• procedural formalisms: e.g., tree automata.
Good surveys about these formalisms and their meta-theory,
can be found in, e.g., [1]–[3] and [4], Chapter 7.

Essentially, two different tree representations are used in
these formalisms:

• In the declarative and algebraic formalisms, a tree is
specified as a (finite) structure over a vocabulary that
minimally contains a binary parent-child predicate, and,
in the case of node-labeled trees, unary label predicates.
Depending on the subject and the requirements of study,
the vocabulary may additionally contain some of the bi-
nary predicates right-sibling, left-sibling, their reflexive-
transitive closures right-siblings and left-siblings, descen-
dant, and ancestor. (One may furthermore also consider
ternary predicates, such as least common ancestor [5].)

• In the procedural, automata-based, formalisms, a tree is
specified as a prefix-closed set of natural number strings
which “names” the nodes in a top-down, left-to-right,
order. This way of encoding permits a tree-automaton
to “read” the tree and make appropriate state transitions.
(For more details, see, e.g., [6]).

A common theme across the study of tree formalisms is to
determine the classes of boolean and unary queries that they
can define. Here,

• a boolean query maps each tree to a boolean value, and,
hence, can be viewed as a tool to specify the class of
trees for which the query is true;

• a unary query maps each tree into a subset of its nodes,
and, hence, can be viewed as a tool to differentiate the
nodes in the output from other nodes of the tree.

It is possible that different tree formalisms express the
same boolean and unary queries. In this paper, we focus
on the class of unranked, unordered, rooted trees with only
the parent-child relation, in addition to any number of unary
node label predicates. Our main result is that every unary
query expressible in first-order logic, FO, over such trees
is already expressible in two-variable first-order logic with
counting quantifiers, FO2 + C. The same result for boolean
queries follows readily. Of course, the same result for binary
or higher-arity queries does not hold, e.g., the query asking
for all sibling pairs is not expressible in FO2 + C. However,
our result does readily imply that, still over the class of trees
under consideration, every k-ary FO query, k ≥ 1, is also
expressible in FOk+1 + C.

In Section II, below, we outline our strategy to prove the
main result, and explain how the technical part of the paper
is organized accordingly. Here, we wish to emphasize that
the proof also entails an equivalence-preserving translation
algorithm from FO to FO2 + C. (The translation in the other
direction is, of course, straightforward.)

An important source of inspiration for us was the work
of Straubing [7] on strings with successor in the context of
formal languages. From his work, it follows that our result was
already known for boolean queries on strings with successor.
However, our results are more generally proven for unary
queries, and, while the case of boolean queries follows readily
from that of unary queries, this is not so the other way around.
Finally, we observe that our results can easily be specialized
to the case of ranked, ordered trees by using special node
predicates child-i to indicate that a node is to be interpreted as
the ith child of its parent.

II. PROOF STRATEGY

Here, we give an outline of our proof strategy for the
main result and explain how the technical part of the paper is
organized accordingly.

Our proof strategy consists of two steps.
In the first step, given r ≥ 0, we define an equivalence

relation on structures (T, n), with n a node of tree T, such that
equivalent structures cannot be distinguished by unary first-
order logic sentences of quantifier rank r. This equivalence
relation on trees, ≈r, is proposed in Section VII, and is based
on a global equivalence notion on trees, ≈b,d,k, defined in
Section VI. It involves a local equivalence on tree nodes, ≈b,d,
in the style of similar relations in, e.g., [8]–[13], and a counting
condition on ancestors at a given distance of locally equivalent
tree nodes. The local equivalence relation on tree nodes is
presented and studied in Section V. A key tool in this study is
the concept of a bounded neighborhood of a set of nodes of a
tree. The actual result of this first step is proved in Section VII
by establishing a winning strategy for the Duplicator in the
Ehrenfeucht-Fraı̈ssé game of r rounds on equivalent structures.

In the second step, we show that, for each r ≥ 0, there exists
s ≥ 0 and c ≥ 0 such that every equivalence class [(T, n)] for
≈r can be described by a unary formula ψT,n with quantifier
rank at most s in two-variable first-order logic with counting,

in which counting is bounded by c. As a consequence of this
result and the result of Section VII, a unary first-order formula
φ of quantifier rank r can be written as the infinite disjuction∨

n∈JφKT ψT,n. Without loss of generality, we may assume that
the label predicates in the formulae ψT,n also occur in φ.
Hence, given the bounds s and c on the quantifier rank and
the counting, there can only be finitely many such formulae
up to equivalence, yielding the desired FO2+C formula. This
second step in our proof strategy is the subject of Section VIII.

The main challenge in this work is to make the bounded
equivalence notion (1) strong enough to ensure that the Dupli-
cator has a winning strategy for the Ehrenfeucht-Fraı̈ssé game
in the first step of our proof strategy, yet also (2) weak enough
so that it can be translated into FO2 + C.

III. RELATED WORK

Most work on logics for trees consider richer vocabular-
ies than merely the parent-child relation, typically including
the sibling and ancestor-descendant predicates. Indeed, these
logics correspond better to automata theory, as well as to
languages used in practice. Below, we restrict our discussion
of results in the literature to those which our results are most
closely related, i.e., those who use a similar tree model:

• Benedikt and Segoufin considered regular tree languages
which are first-order definable as boolean queries1 over
node-labeled, unranked, unordered, rooted trees in a vo-
cabulary consisting of unary label predicates and the bi-
nary parent-child predicate [11]. (A regular tree language
is a language recognized by a tree automaton.) They point
out that there is no obvious way to lift the notion of
locally threshold testability from string to tree languages,
and actually propose first-order definability (with only
the parent-child relation) as a reasonable substitute. This
serves as an additional motivation for this setting and for
our result. Benedikt and Segoufin establish that a regular
tree language is first-order definable in their setting if
and only if it is aperiodic and, for some fixed value of
k, closed under k-guarded horizontal and vertical swaps.
So, in a sense, Benedikt and Segoufin look “from above”
(regular tree languages) to find languages equivalent to
FO, while we look “from below” (two-variable logic)
for that purpose. In view of Benedikt and Segoufin’s
results, our main result establishes that tree-aperiodic, k-
guarded swap-invariant regular unranked-tree languages
are precisely those that can also be defined in FO2 + C.
(For further discussion of this work, we refer to the
survey paper by Bojańczyk on regular tree languages
satisfying invariance properties and their relationship with
the expressive power of various tree logics [2].)

• Charatonik and Witkowski consider FO2+C over (finite)
unranked trees and forests and establish that its satisfia-
bility problem is decidable in NEXPTIME [14].

1See also our comment in the final paragraph of the Introduction on unary
versus boolean queries.

• Marx examined the expressive power of FO over node-
labeled, unranked trees in a vocabulary containing, be-
sides the parent-child predicate, the right-sibling, left-
sibling, ancestor, and descendant predicates [15]. He
established that this language has the same expressive
power as Conditional XPath, which is the three-variable
logic FO3 + C augmented with certain path expressions.
Thus, Marx established a link between definability in
FO and definability in an extension of FO3. Note that
Conditional XPath does not need counting quantifiers,
since they can be simulated using the sibling order
predicates.

• With ten Cate and de Rijke, Marx established additional
results related to finite-variable FO logics and XPath [16],
[17]. In their work, sibling and ancestor predicates are
assumed, however. Relative to our work, the result that
Core XPath is as expressive as FO2 + C in a vocabulary
containing the parent-child, right-sibling, left-sibling, and
descendant predicates is the most notable [17].

• Two-variable first-order logic with counting can be
viewed as graded modal logic, duly extended with two-
way and global modalities. Thus, on the surface, our
result may appear related to van Benthem-like results
to the effect that first-order logic formulas, invariant
(over graphs) under suitable notions of bisimulation, are
expressible in suitable variants of graded modal logic
[18]. Our result is qualitatively different, however, since it
focuses on expressiveness over trees, and does not assume
any kind of invariance over graphs.

To conclude, we want to mention the work of Hellings et
al. [19], [20] on Tarski’s Relation Algebra on unordered
trees, in which it is shown that some special sublanguages
of FO3 can already be expressed in FO2, and the work of
Gyssens et al. [12] and Fletcher et al. [13] on the navigational
expressiveness (i.e., expressive power at instance rather than
query level) of Core XPath with counting quantifiers on node-
labeled unordered trees. These works in particular inspired us
to make the conjecture which we prove in the present paper.
Somewhat to our surprise, we have not seen this result being
conjectured in the extensive literature on logics for trees.

IV. PRELIMINARIES

A. Graphs and trees

In this paper, we consider a vocabulary consisting of an
infinite number of unary predicate symbols ℓ1(x), ℓ2(x), . . .
and one binary predicate symbol E(x, y). The unary predicate
symbols represent node labels, and the binary predicate the
edge relation. We denote by P the set of all unary predicate
symbols of the vocabulary. Any finite structure over this
vocabulary is a (node-labeled) graph. We denote a graph
as G = (N , λ, E), where N is the set of nodes of G,
λ : P → 2N the labeling function associating to each unary
(label) predicate the set of nodes of G satisfying it, and
E ⊆ N×N the edge relation of G. If, for all λ ∈ P , λ(ℓ) = ∅,
then G is called unlabeled.

Let G = (N , λ, E) and N ⊆ N . The subgraph of G
generated by N is the graph GN = (N,λ|N , E ∩ N × N),
where λ|N is the restriction of λ to N .

We are concerned with (node-labeled) unranked, unordered,
rooted trees, which we shall refer to as simply “trees”. A tree
is therefore a graph with an anti-reflexive and anti-symmetric
edge relation which is acyclic and in which exactly one node,
the root, has indegree 0 and all other nodes have indegree 1.
We denote a tree as T = (N , λ, E), where E ⊆ N ×N is the
parent-child relation of T.

In this paper, whenever we consider two distinct trees, T1 =
(N1, λ1, E1) and T2 = (N2, λ2, E2), we shall assume, without
loss of generality, that N1 ∩N2 = ∅ to avoid ambiguity.

Let T = (N , λ, E) and m,n ∈ N . The distance ∆T(m,n)
is the sum of the lenghts of the unique paths from p to m and
from p to n, where p is the closest common ancestor of m
and n. If ∆T(m,n) = 1, we say that m and n are adjacent.
Notice that this distance notion satisfies the triangle inequality:
for m,n, q ∈ N , ∆T(m,n) ≤ ∆T(m, q) + ∆T(q, n). We
generalize this notion of distance, as follows. For N ⊆ N and
n ∈ N , ∆T(N,n) = minm∈N ∆T(m,n). Also, for M,N ⊆
N , ∆T(M,N) = minm∈M,n∈N ∆T(m,n).

Let T = (N , λ, E) and N ⊆ N . We denote by N↑∗ the
superset of N containing all ancestors of a node of N in T.
For b > 0, we say that N is b-restricted if no more than b
nodes of N↑∗ are siblings in T. Notice that |N | ≤ b implies
b-restrictedness, but not the other way around. For d > 0, we
denote by N↑d the set {n ∈ N↑∗ | ∆T(N,n) ≤ d}.

Finally, let T = (N , λ, E) and N ⊆ N . The set of nodes
N is connected in T if the subgraph of T generated by N is
again a tree. Let N1, N2 ⊆ N . We say that N1 is disconnected
from N2 if N1 ∩N2 = ∅ and no node of N1 is adjacent to a
node of N2.

B. First-order logic and counting

First-order logic with counting is first-order logic extended
with so-called counting quantifiers of the form ∃≥k, k ≥ 0,
with the obvious meaning. Given the vocabulary described in
Subsection IV-A, formulae in first-order logic with counting
are defined by the grammar

φ := true | x = y | ℓ(x) | E(x, y) | φ ∧ φ | ¬φ | ∃≥kxφ,

in which x and y are variables, ℓ ∈ P , and k ≥ 0.2 Throughout
this work, we use the customary abbreviations as well as the
following shorthand: ∃=kxφ :=

(
∃≥kxφ

)
∧ ¬

(
∃≥k+1xφ

)
.

For a formula φ in first-order logic with counting, qr(φ)
denotes the quantifier rank of φ.

A formula φ(x1, . . . , xm) in first-order logic with counting
with free variables x1, . . . , xm is interpreted as an m-ary query
on graphs (hence, in particular, also on trees), where, given a
graph G = (N , λ, E), the evaluation of φ on G is defined as
JφKG = {(n1, . . . , nm) | G |= φ(n1, . . . , nm)}, which is an
m-ary relation on N . In particular, a boolean query is a null-
ary query where the only two possible evaluation results, {()}

2The traditional existential quantifier ∃ has been omitted from the grammar,
because it is equivalent to ∃≥1, but will be used as an abbreviation.

and ∅, are interpreted as true and false, respectively. For
unary queries, the evaluation result—strictly speaking a unary
relation on N—may alternatively be interpreted as a set of
nodes.

We write FO + C to denote the set of all first-order with
counting queries, and FO to denote the set of all first-order
queries. Obviously, FO + C is no more expressive than FO.
We write FOk + C to denote the set of all FO + C queries
which use at most k distinct variables. Finally, we write FOk

to denote the set of all FO queries which use at most k distinct
variables.

In what follows, we shall not distinguish between a formula
and the corresponding query.

Finally, we say that two queries φ and ψ are equivalent on
trees if, for all trees T, JφKT = JψKT.

V. BOUNDED EQUIVALENCE OF TREE NODES

In this section, we develop a toolkit that allows us to look
“locally” at trees, by only taking into account nodes that are
within a given distance of a given node. In addition, when
comparing the numbers of children of nodes, we only count
up to a given bound.

At the basis of this toolkit is an equivalence notion on
tree nodes, variations of which have been considered in,
e.g., [8]–[13]. This bounded equivalence notion is built up
in two steps. First, we only take into account descendants
of a given tree node. This leads to the notion of downward
bounded equivalence (Subsection V-A). Subsequently, we use
this notion as a stepping stone to define general bounded
equivalence (Subsection V-B).

We then define bounded neighborhoods of a set of tree
nodes (Subsection V-C). In a sense that we shall make precise,
bounded neighborhoods “witness” bounded equivalence.

Throughout this section, we assume b ≥ 2 and d ≥ 0 for
the counting bound, respectively the distance within which we
take nodes into account.

A. Downward Bounded Equivalence

We define downward (b, d)-bounded equivalence of two tree
nodes recursively. These nodes may belong to the same tree
or to different trees. For stating the definition, the following
notions turns out to be very handy:

Notation 1. Let T = (N , λ, E) and n ∈ N . We denote by
[n]↓b,d the set of all siblings of n which are downward (b, d)-
equivalent to n.

Definition 2. Let T1 = (N1, λ1, E1), T2 = (N2, λ2, E2),
and n1, n2 ∈ N1 ∪ N2. We define downward (b, d)-bounded
equivalence of n1 and n2, denoted n1 ≈↓b,d n2, recursively
on d.

1) n1 ≈↓b,0 n2 if, for all ℓ ∈ P , ℓ(n1) ⇔ ℓ(n2);
2) if d > 0, then n1 ≈↓b,d n2 if, for all ℓ ∈ P , ℓ(n1) ⇔

ℓ(n2) and
a) for each child m1 of n1, there is a child m2 of n2

such that m1 ≈↓b,d−1 m2;

1

1’

Fig. 1. The filled square nodes in the trees, marked 1 and 1′, are downward
(2, 2)-bounded equivalent. Moreover, they are also (2, 2)-bounded equivalent.

b) for each child m2 of n2, there is a child m1 of n1
such that m1 ≈↓b,d−1 m2;

c) for each child m1 of n1 and m2 of n2 for
which m1 ≈↓b,d−1 m2, min(|[m1]↓b,d−1|, b) =
min(|[m2]↓b,d−1|, b).

We emphasize that downward (b, d)-bounded equivalence
can be considered for two nodes of two different trees or
two nodes of the same tree (which we actually do to state
Condition 2c of Definition 2). This relation has the following
properties:

Proposition 3. Let T1 = (N1, λ1, E1) and T2 = (N2, λ2, E2).
1) The relation ≈↓b,d is an equivalence relation on N1∪N2.
2) If d > d′ ≥ 0, then n1 ≈↓b,d n2 implies n1 ≈↓b,d′ n2;

hence, the equivalence relation ≈↓b,d on N1 ∪ N2 is a
refinement of the equivalence relation ≈↓b,d′ on N1∪N2.

We now illustrate the notion of downward bounded equiv-
alence by an example.

Example 4. Consider Fig. 1 showing two, for the sake
of simplicity, unlabeled trees. In unlabeled trees, all nodes
are mutually downward (2, 0)-bounded equivalent. Hence,
there are only three equivalence classes for downward (2, 1)-
bounded equivalence: the leaf nodes, the nodes with exactly
one child, and the nodes with at least 2 children. Let us call
these nodes of type 0, type 1, and type 2, respectively. Now,
consider the two black square nodes, marked 1 and 1′. They
have each at least 2 children of type 0, no children of type 1,
and 1 child of type 2. Hence, these nodes are downward (2, 2)-
bounded equivalent.

B. Bounded Equivalence

To decide downward (b, d)-bounded equivalence, we only
looked at descendants at distance at most d from the nodes
concerned. We now use this notion as a stepping stone to
define general (b, d)-bounded equivalence, for which we look
at all nodes at distance at most d from the nodes concerned.

Definition 5. Let T1 = (N1, λ1, E1), T2 = (N2, λ2, E2), n1 ∈
N1, and n2 ∈ N2. We define (b, d)-bounded equivalence of
n1 and n2, denoted n1 ≈b,d n2, recursively on d.

1) n1 ≈b,0 n2 if n1 ≈↓b,0 n2 (i.e., for all ℓ ∈ P , ℓ(n1) ⇔
ℓ(n2));

2) if d > 0, then n1 ≈b,d n2 if n1 ≈↓b,d n2 and either
a) n1 is the root of T1 and n2 is the root of T2, or
b) n1 is not the root of T1 and n2 is not the root of

T2 and m1 ≈b,d−1 m2, where m1 is the parent of
n1 in T1 and m2 is the parent of n2 in T2.

Of course, T1 and T2 may be the same tree or different
trees in Definition 5. Hence, given T1 = (N1, λ1, E1) and
T2 = (N2, λ2, E2), it makes sense to consider (b, d)-bounded
equivalence as a relation on N1 ∪ N2. We can then state the
following analogon to Proposition 3:

Proposition 6. Let T1 = (N1, λ1, E1) and T2 = (N2, λ2, E2).
1) The relation ≈b,d is an equivalence relation on N1∪N2.
2) If d > d′ ≥ 0, then n1 ≈b,d n2 implies n1 ≈b,d′ n2;

hence, the equivalence relation ≈b,d on N1 ∪ N2 is a
refinement of the equivalence relation ≈b,d′ on N1∪N2.

The correctness of Proposition 6 follows from Proposition 3
and a straightforward inductive argument.

Example 7. Consider again Fig. 1 used in Example 4. We
already established that both black square nodes, marked 1
and 1′, are downward (2, 2)-bounded equivalent. They are
not the root of their respective tree. Using the terminology
in Example 4, the parents of nodes 1 and 1′ are both of type 2
and, hence, are downward (2, 1)-bounded equivalent. These
nodes are again not the root of their respective tree. Hence,
their parents (i.e., the grandparents of nodes 1 and 1′) exist,
and, since the trees in Fig. 1 are unlabeled, they are (2, 0)-
bounded equivalent. Hence, the parents of nodes 1 and 1′ are
(2, 1)-bounded equivalent, and nodes 1 and 1′ themselves are
(2, 2)-bounded equivalent.

C. Bounded Neighborhoods

In this subsection, we introduce bounded neighborhoods
of sets of nodes of a tree as a tool to “witness” bounded
equivalence in a sense that will be made precise. Of particular
interest are bounded neighborhoods of single nodes.

Definition 8. Let T = (N , λ, E) and N ⊆ P ⊆ N such that P
is b-restricted. A set B ⊆ N is a (b, d)-neighborhood (nbhd)
of N in T with respect to (w.r.t.) P if it satisfies the following
conditions:

1) all nodes of B are at distance at most d of N ;
2) all nodes of N↑d are in B;
3) all nodes of B \N↑d have a parent in T which is also

in B;
4) if p ∈ B and ∆T(N, p) < d, then, for each child m of

p in T, B contains all nodes of [m]↓b,d−d′ ∩P ↑∗, where
d′ = ∆T(N, p) + 1;

5) if p ∈ B and ∆T(N, p) < d, then, for each child m of
p in T, B contains exactly min(|[m]↓b,d−d′ |, b) nodes of
[m]↓b,d−d′ , where d′ = ∆T(N, p) + 1.

Condition 5 suggests that, in general, not all nodes of
[m]↓b,d−d′ can be part of B. To have some control over which

1

2

3
4

Fig. 2. The set of all filled nodes in Fig. 2 is a (2, 2)-nbhd of the
set N = {1, 2, 3} of the three black square nodes in the tree shown w.r.t.
P = {1, 2, 3, 4}, i.e., N augmented with the grey square node. For emphasis,
the subgraph generated by the neighborhood is visualized by thicker edges.

nodes are in B, the reference set P has been introduced
in Definition 8. Indeed, Condition 4 states that all nodes of
[m]↓b,d−d′ ∩ P ↑∗ must be in B.

Of particular interest in this paper are (b, d)-nbhds of
singleton sets. If, in Definition 8, there is n ∈ N such that
N = {n}, then we shall talk about a (b, d)-nbhd of n in T
w.r.t. P rather than a (b, d)-nbhd of {n} in T w.r.t. P .

Definition 8 is declarative in nature, which is helpful
for proving properties of (b, d)-bounded nbhds, but not for
constructing them. Therefore, we present an algorithm below
which is guaranteed to generate a (b, d)-bounded nbhd.

Algorithm 9. Input: T = (N , λ, E); N ⊆ P ⊆ N with P
b-restricted.
Output: a (b, d)-nbhd B of N in T w.r.t. P .
Method:

1) Initialize B as N↑d, and mark all these nodes as visited;
2) for i := 0 to d−1, do, for each p ∈ B with ∆T(N, p) =

i, and for each unvisited child m ∈ N of p,
a) add to B all unvisited nodes of [m]↓b,d−i−1∩P ↑∗;
b) add to B other unmarked nodes of [m]↓b,d−i−1

until there are exactly min(|[m]↓b,d−i−1|, b) nodes
of [m]↓b,d−i−1 in B;

c) mark all nodes of [m]↓b,d−i−1 as visited.

Proposition 10. Algorithm 9 is correct.

Example 11. In Fig. 2, a (2, 2)-nbhd is exhibited of the
set N = {1, 2, 3} of the black square nodes in the tree shown
w.r.t. P = {1, 2, 3, 4}, i.e., N augmented with the grey square
node. This bounded neighborhood can be constructed using
Algorithm 9.

Here are some useful properties of bounded neighborhoods:

Proposition 12. Let T = (N , λ, E) and N ⊆ P ⊆ N with P
b-restricted. Let B a (b, d)-nbhd of N in T w.r.t. P .

1) If m ∈ B, then all ancestors of m up to the closest
ancestor in N↑d are also in B.

2) All nodes of P ↑∗ at distance at most d of N are in B.

1

1’

2

Fig. 3. In the left tree, the set of all filled nodes is a (2, 2)-nbhd of the black
square node marked 1 w.r.t. P1 = {1, 2}, i.e., the set consisting of the square
nodes. In the right tree, the set of all filled nodes is a (2, 2)-nbhd of the square
node marked 1′ w.r.t. P2 = {1′}. For emphasis, the subgraphs generated by
the neighborhoods are visualized by thicker edges. The grey arrows represent
a bijection between both bounded neighborhoods satisfying Proposition 13.

3) If p ∈ B and ∆T(N, p) ≤ d′ < d, then, for each child
m of p in T, B contains at least min(|[m]↓b,d−d′−1|, b)
nodes of [m]↓b,d−d′−1.

4) If m ∈ N and ∆T(N,m) ≤ d, then, for all n ∈ N with
∆T(n,m) ≤ d, there exists m′ ∈ B such that n and m
have the same closest common ancestor as n and m′,
∆T(n,m) = ∆T(n,m

′), and m≈b,d−∆T(n,m) m
′.

Observe that, in general, a node at distance at most d of N
is not necessarily in B. However, if this node happens to be
in P , it must be in B, by Statement 2. We will exploit this in
the proof of Theorem 32.

We now explain how bounded neighborhoods of single
nodes “witness” bounded equivalence:

Proposition 13. Let T1 = (N1, λ1, E1), T2 = (N2, λ2, E2),
n1 ∈ N1, n2 ∈ N2, P1 ⊆ N1, P2 ⊆ N2, n1 ∈ P1, n2 ∈ P2

with P1 and P2 b-restricted. Let B1 be a (b, d)-nbhd of n1
in T1 w.r.t. P1 and B2 a (b, d)-nbhd of n2 in T2 w.r.t. P2.
If n1 ≈b,d n2, then there exists a bijection f between B1 and
B2 which maps n1 to n2, which is a partial isomorphism
between T1 and T2, and which satisfies, for each node m1 of
B1, m1 ≈b,d−∆T1

(n1,m1) f(m1).

Example 14. Consider again the trees shown in Fig. 1. In
Example 7, we argued that the black square nodes marked 1
and 1′ are (2, 2)-bounded equivalent. In Fig. 3, we have added
(2, 2)-nbhds to each of these nodes. Now, there must be a bi-
jection between both neighborhoods satisfying Proposition 13.
The grey arrows in Fig. 3 exhibit such a bijection.

Unfortunately, there is no obvious way to generalize Propo-
sition 13 to bounded neighborhoods of arbitrary sets of nodes.
What we can do, however, is make the connection between
a bounded neighborhood of an arbitrary set of nodes and
the bounded neighborhoods of the nodes of which this set
is composed more precise.

Proposition 15. Let T = (N , λ, E) and N ⊆ P ⊆ N with
P b-restricted. Let B be a (b, d)-nbhd of N in T w.r.t. P .

Then, for each n ∈ N , there exists a (b, d)-nbhd Bn of n in
T w.r.t. P such that B =

⋃
n∈N Bn.

So, a bounded neighborhood of a set of nodes is always
the union of bounded neighborhoods of the nodes it contains,
which, to some extent, can be seen as a “soundness” condition
for Definition 8.

Example 16. Consider again Example 11, exhibiting a tree
with a (2, 2)-nbhd of a set N = {1, 2, 3} of three nodes
w.r.t. a set P = {1, 2, 3, 4}. The graphical illustration of that
example is copied in the leftmost panel of Fig. 4. The three
other panels show (2, 2)-nbhds of the black square nodes 1,
2, and 3 individually, all w.r.t. P , satisfying Property 15. The
(2, 2)-nbhd of N w.r.t. P , to the left, is indeed the union of
the (2, 2)-nbhds of 1, 2, respectively, 3, w.r.t. P , to the right.

At this point, one could have wondered why we did not
simply define a bounded neighborhood of a set of nodes as
the union of bounded neighborhoods of its individual nodes.
The problem with this alternative approach is that, whenever
Algorithm 9 leaves some choice in Step 2b as to which
nodes are added to the neighborhoods, we cannot enforce
any “coordination” between these choices, and, hence, their
union may contain more nodes than strictly necessary. As
a consequence, Proposition 20, a key result in many proofs,
would no longer hold.

Example 17. Continuing with Example 16, consider the
(2, 2)-nbhds of the nodes 1, 2, and 3 individually, all w.r.t.
P = {1, 2, 3, 4}, shown in the three panels to the right
in Fig. 5. Their union is not equal to the (2, 2)-nbhd of
N = {1, 2, 3} w.r.t. P with which we started in Example 16,
and which is shown in the leftmost panel of Fig. 4. It is
not even a superset of that. Moreover, it contains more nodes
than the (2, 2)-nbhd in the leftmost panel of Fig. 4, which is
indicative of the lack of “coordination” between the choices
made to construct the bounded neighborhoods of nodes 1, 2,
and 3 individually in the right three panels of Fig. 5.

The idea that the union of arbitrary bounded neighborhoods
of individual neighborhoods is in general “redundant” is
captured by the following result:

Proposition 18. Let T = (N , λ, E), N ⊆ P ⊆ N with P
b-restricted. Let, for n ∈ N , Bn be a (b, d)-nbhd of n in T
w.r.t. P . Then, there exists a (b, d)-nbhd B of N in T w.r.t. P
for which B ⊆

⋃
n∈N Bn.

Example 19. Continuing with Example 17, the leftmost panel
of Fig. 5 shows a (2, 2)-nbhd of the set N = {1, 2, 3} w.r.t.
P = {1, 2, 3, 4} which is contained in the union of the (2, 2)-
nbhds of of the red nodes 1, 2, and 3 individually, all also w.r.t.
P , shown in the other panels. Notice that the (2, 2)-nbhd of
N w.r.t. P in Fig. 5 has the same number of nodes as the
(2, 2)-nbhd of N w.r.t. P in Fig. 4.

It is perhaps useful to point out that, if the neighborhoods
of the individual nodes would not all have been taken with
respect to reference sets containing N , it is possible that their

1

4
3

2

1

4
3

2

1

4
3

2

1

4
3

2

Fig. 4. In the left-most tree, we see the (2, 2)-nbhd of the set N = {1, 2, 3} of the black square nodes w.r.t. P = {1, 2, 3, 4}, i.e., N augmented with the
grey square node, shown in Fig. 2. In the three copies of this tree to the right, we see (2, 2)-nbhds of the red nodes 1, 2, and 3 individually, all w.r.t. P ,
satisfying Property 15. The same graphical conventions were used as in Figs. 2 and 3.

1

4
3

2

1

2

3
4

1

2

3
4

1

2

3
4

Fig. 5. This figure should be compared with Fig. 4. The three panels to the right show (2, 2)-nbhs of nodes 1, 2, and 3 individually, all w.r.t. P = {1, 2, 3, 4}.
Observe that their union is not equal to the (2, 2)-nbhd of the set N = {1, 2, 3} w.r.t. P exhibited in the leftmost panel of Fig. 4. It is not even a superset of
that. According to Proposition 18, however, there exists a (2, 2)-nbhd of N w.r.t. P which is contained in the union of these three bounded neighborhoods.
Such a bounded neighborhood is shown in the leftmost panel.

union does not contain a neighborhood of N , regardless of the
reference set.

The following result states that all bounded neighborhoods
of the same set of nodes are actually isomorphic:

Proposition 20. Let T = (N , λ, E), N ⊆ P1 ⊆ N , N ⊆
P2 ⊆ N with P1 and P2 b-restricted. Let B1 and B2 be (b, d)-
nbhds of N in T w.r.t. P1, respectively P2. Then, there exists
a bijection f between B1 and B2 which fixes all nodes of N ,
which is a partial automorphism of T, and which satisfies, for
each node m1 of B1, m1 ≈b,d−∆T(N,m1) f(m1).

Like Proposition 13, Proposition 20 holds irrespective of
the reference sets P1 and P2. We will exploit this in the proof
of Theorem 32 to introduce additional values in the reference
set.

Example 21. The left panels of Figs. 4 and 5 show (2, 2)-
nbhds of the same set of nodes in the same tree, and they are
indeed isomorphic.

From Propositions 15, 18, and 20, we can immediately
derive the following corollary, which provides a justification
for the notion of bounded neighborhood in Definition 8:

Corollary 22. Let T = (N , λ, E) and N ⊆ P with P b-
restricted. For n ∈ N , let Bn be a (b, d)-nbhd of n w.r.t. P .
Then,

⋃
n∈N Bn is a (b, d)-nbhd of N w.r.t. P if and only if

|
⋃

n∈N Bn| is minimal. Moreover, all (b, d)-nbhds of N w.r.t.
P are isomorphic.

Propositions 15 and/or 18 can sometimes be used to boot-
strap results from the level of bounded neighborhoods of single
nodes to the level of bounded neighborhoods of sets of nodes.
We present an example of this to obtain a result which we
need later on.

Proposition 23. Let T = (N , λ, E) and N ⊆ P ⊆ N with P
b-restricted. Let B a (b, d)-nbhd of N in T w.r.t. P , m ∈ B∩P ,
and d′ ≤ d−∆T(N,m). Then, B contains a (b, d′)-nbhd of m
in T w.r.t. P .

In combination with Proposition 18, the following is now
an immediate corollary to Proposition 23:

Corollary 24. Let T = (N , λ, E) and N ⊆ P ⊆ N with P b-
connected. Let B be a (b, d)-nbhd of N w.r.t. P . Let N ′ ⊆ P
such that, for all n′ ∈ N ′, d′ ≤ d − ∆T(N,n

′). Then, B
contains a (b, d′)-nbhd of N ′ in T w.r.t. P .

To complete our study of bounded neighborhoods, we need
two results relating to connectedness.

Proposition 25. Let T = (N , λ, E) and N1, N2 ⊆ P ⊆ Nwith
P b-restricted. Let BN1 and BN2 be (b, d)-nbhds of N1 and
N2, in T w.r.t. P . Then BN1 and BN2 are disconnected if only
if ∆T(N1, N2) > 2d+ 1.

Proposition 26. Let T = (N , λ, E) and N1, N2 ⊆ P ⊆ N
with P b-restricted. Let BN1

and BN2
be (b, d)-nbhds of N1

and N2, in T w.r.t. P . If BN1 and BN2 are disconnected, then
BN1 ∪BN2 is a (b, d)-nbhd of N1 ∪N2 in T w.r.t. P .

Example 27. Consider again Example 11 and Fig. 2. The
subgraph generated by the exhibited (2, 2)-nbhd of the set
N = {1, 2, 3} w.r.t. P = {1, 2, 3, 4} is disconnected. One can
easily verify that the set of nodes of the connected component
“to the left” in the tree is a (2, 2)-nbhd of N ′ = {1, 2} w.r.t. P .
Similarly, the set of nodes of the connected component “to the
bottom right” in the tree is a (2, 2)-nbhd of node 3 w.r.t. P .
In accordance with Proposition 25, ∆T(N

′, 3) = 6 > 2.2+1.
Also, the union of both neighborhoods is a (2, 2)-nbhd of N =
N ′ ∪ {3} w.r.t. P , in accordance with Proposition 26.

We need one more result, which follows from Proposi-
tions 15, 18, 20, 25, and 26.

Corollary 28. Let T = (N , λ, E) and N ⊆ P ⊆ N with P
b-restricted. Let B1 be a (b, d)-nbhd of N in T w.r.t. P . Let
p ∈ B1 such that P ∪ {p} is also b-restricted. Then, there
exists a (b, d)-nbhd B2 of N in T w.r.t. P ∪ {p} containing p
and a bijection f between B1 and B2 which fixes all nodes of
N , which is a partial automorphism of T, and which satisfies,
for each node m1 of B1, m1 ≈b,d−∆T(N,m1) f(m1).

Like Proposition 13, we will use Corollary 28 in the proof
of Theorem 32 to introduce additional values in the reference
set.

VI. BOUNDED EQUIVALENCE OF TREES

We are now going to define a “global” equivalence on trees,
based on the “local” bounded equivalence notion elaborated
upon in Section V and a counting condition which does not
directly involve bounded equivalent nodes, but their ancestors
at a given distance.

Definition 29. Let T1 = (N1, λ1, E1) and T2 = (N2, λ2, E2).
Let b ≥ 2 and d, k ≥ 0. Then T1 and T2 are (b, d, k)-bounded
equivalent, denoted T1 ≈b,d,k T2, if

1) for each node m1 ∈ N1, there is a node m2 ∈ N2 such
that m1 ≈b,d m2, and vice versa;3

2) for each node m ∈ N1 ∪N2 and for each d′ = 0, . . . , d
the number of ancestors at distance 2d′ + 1 of nodes
of T1 that are (b, d′)-bounded equivalent to m and the
number of ancestors at distance 2d′ + 1 of nodes of T2

that are (b, d′)-bounded equivalent to m are either equal
or both at least k.

Bounded-equivalent trees must resemble each other close to
the root, in the following sense:

Proposition 30. Let T1=(N1, λ1, E1) and T2=(N2, λ2, E2).
Let b ≥ 2 and d, k ≥ 0, and let T1 ≈b,d,k T2. Let r1 be
the root of T1 and r2 the root of T2. Let n1 ∈ N1 be such
that ∆T1(r1, n1) ≤ d. Then, there exists n2 ∈ N2 such that
∆T1

(r1, n1) = ∆T2
(r2, n2) and n1 ≈b,d−∆T1

(r1,n1) n2.

Proof: From Condition 1 of Definition 29, it follows that
r1 ≈b,d r2. Now, let B1 be a (b, d)-nbhd of r1 in T1 with

3As a consequence (Proposition 6), for all d′ = 0, . . . , d, we also have that,
for each node m1 ∈ N1, there is a node m2 ∈ N2 such that m1 ≈b,d′ m2,
and vice versa.

respect to {r1, n1} and B2 a (b, d)-nbhd of r2 in T2 with
respect to {r2}. By Statement 2 of Proposition 12, n1 ∈ B1.
By Proposition 13, there is a bijection f : B1 → B2 mapping
r1 to r2 which is a partial isomorphism between T1 and T2

satisfying, for all p1 ∈ B1, p1 ≈b,d−∆T1
(r1,p1) f(p1). Hence,

n2 := f(n1) satisfies all the requirements.

VII. FIRST-ORDER INDISTINGUISHABILITY OF
BOUNDED-EQUIVALENT TREES

In this section, we define, for r ≥ 0, ≈r-equivalence on
structures (T, n), with n an node of tree T. We show that
≈r-equivalent structures cannot be distinguished by unary FO
queries of quantifier rank r. To establish this, we show that the
Duplicator has a winning strategy on the Ehrenfeucht-Fraı̈ssé
game (e.g., [4], Chapter 3) of r rounds on ≈r-equivalent
structures.

Definition 31. Let T1 = (N1, λ1, E1), T2 = (N2, λ2, E2),
n1 ∈ N1, and n2 ∈ N2. Let d = 7r − 1, b = r + 2, and
k = 4d + 4. Then, (T1, n1) ≈r (T2, n2) if T1 ≈b,d,k T2 and
n1 ≈b,d n2.

Theorem 32. Let T1 = (N1, λ1, E1), T2 = (N2, λ2, E2), n1 ∈
N1, and n2 ∈ N2. If (T1, n1)≈r (T2, n2), then the Duplicator
has a winning strategy on the Ehrenfeucht-Fraı̈ssé game of r
rounds on (T1, n1) and (T2, n2).

Proof: For convenience, we play the game on T1 and
T2 to which we add a 0th round in which n1 and n2 are
chosen. For i = 0, . . . , r, we denote the nodes chosen in the
ith round in T1 and T2 by n1i and n2i, respectively. We also
put N1i = {n10, . . . , n1i} and N2i = {n20, . . . , n2i}. For
i = 0, . . . , r, let di = 7r−i − 1. We denote by r1 the root
of T1 and by r2 the root of T2. We prove, by induction on i,
that the Duplicator can answer the moves of the Spoiler in such
a way that, for i = 0, . . . , r, Condition (i) below is satisfied
after the ith round:

There exists a (b, di)-nbhd B1i of N1i in T1

w.r.t. N1i, a (b, di)-nbhd B2i of N2i in T2 w.r.t. N2i,
and a bijection fi : B1i → B2i mapping n10 to
n20, . . . , n1i to n2i which is a partial isomorphism
between T1 and T2 satisfying, for each node p1 of
B1i, p1 ≈b,di−∆T1

(N1i,p1) fi(p1).
Since B1r = N1r and B2r = N2r, Condition (r) expresses
precisely that the Duplicator wins.

Induction basis: Let B10 be a (b, d)-nbhd of n10 = n1 in
T1 w.r.t. {n1} and B20 a (b, d)-nbhd of n20 = n2 in T2 w.r.t.
{n2}. Since n1 ≈b,d n2, we know, by Proposition 13, that
there exists a bijection f0 : B10 → B20 mapping n1 to n2
which is a partial isomorphism between T1 and T2 satisfying,
for each node p1 of B10, p1 ≈b,d−∆T1

(n1,p1) f0(p1). Since
N10 = {n10} = {n1} and d0 = d, Condition (0) is satisfied.

Induction step: Assume that, for some i, 0 < i ≤ r,
Condition (i−1) is satisfied after the (i−1)st round. Without
loss of generality, the Spoiler chooses n1i in T1. We now
explain how the Duplicator must respond to guarantee that
Condition (i) is satisfied after the ith round.

Before going into detail, we first give a general outline of
the induction step. There are two possibilities: the Spoiler
chooses n1i “close” to N1(i−1), or the Spoiler chooses n1i
“far” from N1(i−1). In the former case, we can modify B1(i−1)

to ensure that it contains n1i. The partial isomorphism fi−1

is then used to find an appropriate answer for the Duplicator
which allows us to guarantee that Condition (i) is satisfied after
the ith round. In the latter case, the Duplicator must choose
n2i “far” from N2(i−1). It is for this purpose that the perhaps
somewhat awkward Counting Condition 2 of Definition 29
of bounded-equivalent trees was devised. Before explaining
how we use it, we want to point out that it is not helpful to
count the number of nodes that are (b, di)-bounded equivalent
to n1i in both T1 and T2 up to a certain bound and then
requiring that these numbers are equal. Such a condition
would only help us to establish that the Duplicator can choose
n2i outside some bounded neighborhood of N2(i−1), but not
“far” from N2(i−1). (Indeed, at each distance from N2(i−1),
nodes of T2 may have been eliminated to create the bounded
neighborhood.) It does help, however, to count ancestors at
“sufficient distance” of nodes that are (b, di)-equivalent to n1i,
and compare these counts up to a certain bound (Condition 2
of Definition 29). Indeed, if a node is “close” to, say, n2j ,
0 ≤ j < i, then an ancestor at “sufficient distance” of that
node is necessarily an ancestor of n2j , and may belong to
some bounded neighborhood of n2j , even if the node itself
does not. So, if the Duplicator can chose n2i in such a way
that it has a ancestor at “sufficient distance” in T2 which, for
all j = 0, . . . , i−1, is not an ancestor of n2j “too close” to n2j ,
we can actually prove that n2i is “far” from N2(i−1). There
is one caveat, however. This reasoning will only work if the
node n1i has an ancestor at “sufficient distance” in T1, which
need not be the case if it is “too close” to the root of T1. In
that case, we use Proposition 30 to ensure that the Duplicator
can chose a (b, di)-bounded equivalent node n2i at the same
distance of the root of T2. Using the triangle inequality, it is
then possible to prove that n2i is “far” from N2(i−1). Finally,
if n1i is “far” from N1(i−1) and n2i is “far” from N2(i−1), we
know that, for j = 1, 2, any (b, di) neighborhood of nji in Tj

w.r.t. Nji will be disconnected from any (b, di) neighborhood
of Nj(i−1) in Tj w.r.t. Nji. Proposition 26 then allows us
to treat n1i and n2i separately from the previously selected
nodes, more or less as in the Induction Basis, to guarantee
that Condition (i) is satisfied after the ith round.

We now give the details. As explained above, we must
distinguish between two cases. The threshold between “close”
and “far” turns out to be 6di + 6:

1) The spoiler chooses n1i such that ∆T1
(N1(i−1), n1i) ≤

6di + 6 (“close”). In particular, ∆T1
(N1(i−1), n1i) ≤

di−1. Hence, if B1(i−1) is also a (b, di−1)-nbhd of
N1(i−1) w.r.t. to N1i (instead of just N1(i−1)), then
n1i ∈ B1(i−1). Proposition 20 allows us to modify
B1(i−1) in such a way that this is indeed the case. The

Duplicator now chooses n2i = f(n1i).4 Corollary 28
also allows us to change B2(i−1) to a (b, di−1)-nbhd
of N2(i−1) w.r.t. to N2i (instead of just N2(i−1)). Now,
di−1 ≥ di and di−1 − (6di + 6) = di. By Corollary 24,
there exists a (b, di)-nbhd B1i ⊆ B1(i−1) of N1i in
T w.r.t. N1i. Let B2i = fi−1(B1i). Obviously, fi =
fi−1|B1i is a bijection from B1i to B2i, and it is a partial
isomorphism between T1 and T2, because fi−1 is. Now,
let p1 be a node of B1i. Then, ∆T1

(N1i, p1) ≤ di. If
∆T1

(N1i, p1) = ∆T1
(N1(i−1), p1), then,

di−1 −∆T1(N1(i−1), p1) ≥ di −∆T1(N1i, p1);

otherwise, ∆T1
(N1i, p1) = ∆T1

(n1i, p1). By the trian-
gle inequality, it also follows in this case that

di−1 −∆T1(N1(i−1), p1)

≥ di−1 −∆T1(N1(i−1), n1i)−∆T1(n1i, p1)

≥ di −∆T1(N1i, p1).

Condition (i − 1) and Proposition 6 then yield that
p1 ≈b,di−∆T1

(N1i,p1) fi(p1). Finally, from this property
and the fact that B1i is a (b, di)-nbhd of N1i in T1

w.r.t. N1i, it follows that B2i is a (b, di)-nbhd of N2i in
T2 w.r.t. N2i. We may thus conclude that, in this case,
Condition (i) is satisfied after the ith round.

2) The spoiler chooses n1i such that ∆T1
(N1(i−1), n1i) ≥

6di+7 (“far”). In particular, ∆T1
(N1(i−1), n1i) > 2di+

1. Hence, by Proposition 25, any (b, di)-nbhd of N1(i−1)

in T1 w.r.t. N1i is disconnected from any (b, di)-nbhd
of n1i in T1 w.r.t. N1i. In this case, the Duplicator aims
to choose n2i ∈ N2 such that

n1i ≈b,di
n2i and ∆T1

(N2(i−1), n2i) > 2di + 1. (1)

If this is possible, then any (b, di)-nbhd of N2(i−1) in T2

w.r.t. N2i is also disconnected from any (b, di)-nbhd of
n2i in T2 w.r.t. N2i. As explained in our proof strategy,
we have to distinguish between the case that n1i has an
ancestor at “sufficient distance” in T1 and the case that
n1i has no such ancestor to show that Aim (1) above
can be achieved. Here, “sufficient distance” is 2di + 1.
We start with the latter case:

a) ∆T1
(r1, n1i) ≤ 2di. Since both 2di ≤ di−1

and di−1 − 2di ≥ di, it follows from Proposi-
tions 30 and 6 that the Duplicatior can choose
n2i ∈ N2 such that ∆T1(r1, n1i) = ∆T2(r2, n2i)
and n1i ≈b,di n2i. Now, let 0 ≤ j < i. By the
triangle inequality,

∆T1
(r1, n1j) ≥ ∆T1

(n1j , n1i)−∆T1
(r1, n1i)

≥ (6di + 7)− 2di = 4di + 7.

Also, di−1 ≥ 4di + 7. By Condition (i − 1),
n1j≈b,di−1

n2j . Hence, min(∆T1
(r1, n1j), di−1) =

4In particular, if the Spoiler chooses n1i = n1j , 0 ≤ j < i, then the
Duplicator chooses n2i = n2j .

min(∆T2
(r2, n2j), di−1). We then have, using the

triangle inequalty, that

∆T2
(n2j , n2i) ≥ ∆T2

(r2, n2j)−∆T2
(r2, n2i)

≥ (4di + 7)− 2di > 2di + 1,

and, hence, ∆T2
(N2(i−1), n2i) > 2di + 1, as was

required to realize Aim (1).
b) ∆T1(r1, n1i) ≥ 2di + 1. Hence, n1i has an ances-

tor, say p1, at distance 2di + 1 of n1i. We define
the following sets, for j = 1, 2:
Qj = {qj ∈ Nj | qj is an ancestor at distance at

most 4di + 2 of a node in Nj(i−1), and there
exists mj ∈ Nj such that qj is an ancestor at
distance 2di + 1 of mj and n1i ≈b,di mj}.

Now suppose, for the sake of argument, that the
Duplicator can choose n2i in T2 such that n1i≈b,di

n2i, and ∆T2
(r2, n2i) ≥ 2di+1. Hence, n2i has an

ancestor, say p2, at distance 2di+1 of n2i. Suppose
furthermore that the Duplicator can ensure that

p2 /∈ Q2. (2)

If, for some j, 0 ≤ j < i, ∆T2
(n2j , n2i) ≤ 2di+1,

then, p2 must also be an ancestor of n2j and, by the
triangle inequality, ∆T2(p2, n2j) ≤ 4di + 2, con-
tradicting p2 /∈ Q2. Hence, ∆T2

(N2(i−1), n2i) >
2di + 1, realizing Aim (1). We are now going to
establish properties of Q1 and Q2 from which we
can derive that such a choice for n2i is possible.
Property 1: p1 /∈ Q1. Indeed, by the triangle

inequality, for all j = 0, . . . , i− 1,

∆T1
(p1, n1j) ≥ ∆T1

(n1j , n1i)−∆T1
(p1, n1i)

≥ (6di + 7)− (2di + 1) > 4di + 2.

Property 2: Q1 ⊆ B1(i−1) and Q2 ⊆ B2(i−1).
Let q1 ∈ Q1. Hence, there exists j, 0 ≤ j < i,
such that q1 is an ancestor of n1j at distance at
most 4di+2. Since 4di+2 ≤ di−1, B1(i−1) must
contain q1, by Condition 2 of Proposition 12.
Analogously, Q2 ⊆ B2(i−1).

Property 3: fi−1(Q1) = Q2. By symmetry, it suf-
fices to prove that q1 ∈ Q1 implies fi−1(q1) ∈
Q2. Thus, let q1 ∈ Q1. Hence, there exists j,
0 ≤ j < i, such that q1 is an ancestor of
n1j at distance at most 4di + 2. Moreover q1
is also an ancestor of a node, say m1, such
that ∆T1(q1,m1) = 2di + 1 and n1i ≈b,di m1.
By Proposition 15, there exists a (b, di−1)-nbhd
B′

1j ⊆ B1j of n1j in T1 w.r.t. N1i. By the
triangle inequalty,

∆T1(n1j ,m1) ≤ ∆T1(q1, n1j) + ∆T1(q1,m1)

≤ (4di + 2) + (2di + 1) ≤ 6di + 6.

In Case 1, we argued that di−1 − (6di + 6) =
di ≥ 0. By Statement 4 of Proposition 12,

B′
1j (and, hence, B1j) contains a node m′

1 such
that n1j and m′

1 have the same closest com-
mon ancestor as n1j and m1, ∆T1

(n1j ,m1) =
∆T1

(n1j ,m
′
1), and m1 ≈b,di

m′
1. Hence, also

n1i ≈b,di m
′
1. Since q1 is a common ancestor

of n1j and m1, it follows that q1 is an ancestor
of m′

1 and that ∆T1
(q1,m

′
1) = 2di + 1. Now,

consider p2 = fi−1(p1) and m′
2 = fi−1(m

′
1).

Since

di−1−∆T1
(N1(i−1),m

′
1)

≥ di−1 −∆T1
(n1j ,m

′
1) ≥ di,

Condition (i − 1) and Proposition 6 yield
m′

1 ≈b,di m
′
2, and, hence, also n1i ≈b,di m

′
2.

Since fi−1 is a partial tree isomorphism, q2 is
an ancestor of n2j at distance at most 4di + 2,
and also an ancestor of m′

2 at distance 2di + 1.
Hence, q2 ∈ Q2.

Property 4: |Q1| = |Q2| ≤ 4d + 3. By Proper-
ties 2 and 3, |Q1| = |Q2|. Now, |N1(i−1)| ≤ i
and each node in N1(i−1) has at most 4di + 3
ancestors at distance at most 4di + 2. Hence,
|Q1| ≤ i(4di + 3) ≤ 4d + 3. To obtain this
bound, we used that, for all i > 0, i.7r−i ≤ 7r

and i ≥ 1.
From comparing Property 4 with Condition 2 of
Definition 29 of bounded-equivalent trees, and
from Property 1, it follows that there exists n2i ∈
N2 such that n1i ≈b,di

n2i, n2i has an ancestor at
distance 2di + 1, say p2, and p2 /∈ Q2. Thus, the
Duplicator managed to realize Aim (2), and, hence,
also Aim (1).

From the above analysis, we conclude that, in Case 2,
the Duplicator can always realize Aim (1).
By reasoning as in Case 1, we can establish the existence
of a (b, di)-nbhd Bold

1i of N1(i−1) in T1 w.r.t. N1i,
a (b, di)-nbhd Bold

2i of N2(i−1) in T2 w.r.t. N2i, and
a bijection foldi : Bold

1i → Bold
2i mapping n10 to

n20, . . . , n1(i−1) to n2(i−1) which is a partial tree
automorphism satisfying, for each node p1 of Bold

1i ,
p1 ≈b,di−∆T1

(N1(i−1),p1) f
old
i (p1). By reasoning as for

the Induction Basis, we can establish the existence of a
(b, di)-nbhd Bnew

1i of n1i in T1 with respect to N1i, a
(b, di)-nbhd Bnew

2i of n2i in T2 with respect to N2i, and
a bijection fnewi : Bnew

1i → Bnew
2i mapping n1i to n2i

which is a partial tree automorphism satisfying, for each
node p1 of Bnew

1i , p1 ≈b,di−∆T1
(n1i,p1) f

new
i (p1). Since

∆T1
(N1(i−1), n1i) > 2di + 1 and ∆T2

(N2(i−1), n2i) >
2di + 1, Bnew

1i is disconnected from Bold
1i and Bnew

2i

is disconnected from Bold
2i . By Proposition 26, B1i :=

Bold
1i ∪ Bnew

1i is a (b, di)-nbhd of N1i w.r.t. N1i and
B2i := Bold

2i ∪Bnew
2i is a (b, di)-nbhd of N2i w.r.t. N2i.

Now, for p1 ∈ Bold
1i , ∆T1(N1i, p1) = ∆T1(N1(i−1), p1);

for p1 ∈ Bnew
1i , ∆T1(N1i, p1) = ∆T1(n1i, p1). Let

fi := foldi ∪ fnewi . Then fi is a bijecton between B1i

and B2i mapping n10 to n20, . . . , n1i to n2i which is
a partial tree automorphism satisfying, for each node p1
of B1i, p1 ≈b,di−∆T1

(N1i,p1) fi(p1). Hence, also in this
case, Condition (i) is satisfied afther the ith round.

In summary, we have shown, assuming that Condition (i− 1)
is satisfied after the (i − 1)st round of the game, that the
Duplicator can always answer the move of the Spoiler in the
ith round in such a way that Condition (i) is always satisfied
after the ith round, completing the inductive argument.

We have already observed that Condition (r) at the end of
the game described above implies the Duplicator won. Since
we made no assumptions on the moves of the Spoiler, we may
conclude that the Duplicator has a winning strategy.

Corollary 33. Let T1 = (N1, λ1, E1), T2 = (N2, λ2, E2),
n1 ∈ N1, and n2 ∈ N2. Let φ be a unary first-order query
with qr(φ) = r. If (T1, n1) ≈r (T2, n2), then n1 ∈ JφKT1 if
and only if n2 ∈ JφKT2 .

VIII. MAIN RESULT

As explained in Section II, we must show that, given
r ≥ 0, the equivalence classes for ≈r can be described by
FO2 + C formulae of which the quantifier rank and counting
are bounded by functions of r. This is done in Theorem 37,
based on the results in Lemmas 34 and 35.5

Lemma 34. 1) Let d ≥ 0. There exists a unary FO2 query
rand(x) of quantifier rank d + 1 such that, for T =
(N , λ, E) and for n ∈ N , n ∈ Jrand(x)KT if and only
if n is at distance d from the root of T.

2) Let φ be a unary FO2 + C query. There exists a unary
FO2 + C query dscd,φ(x) of quantifier rank qr(φ) + d
such that, for T = (N , λ, E) and for n ∈ N , n ∈
Jdscd,φ(x)KT if and only if n has a descendant m at
distance d from n with m in JφKT.

Proof:
1) Clearly, ran0(x) := ¬∃y E(y, x); if d > 0, then

rand(x) := ∃y (E(y, x) ∧ rand−1(y)).
2) Clearly, dsc0,φ(x) := φ(x); if d > 0, then dscd,φ(x) :=

∃y (E(x, y) ∧ dscd−1,φ(y)).
Let R ⊆ P be a finite set of label predicates. We say that

T = (N , λ, E) is an R-tree if, for all ℓ ∈ P \ R, λ(ℓ) = ∅.

Lemma 35. 1) Let T = (N , λ, E) be an R-tree, and let
n ∈ N . There exists a unary quantifier-free FO2 query
labT,n(x) such that, for each R-tree T′ = (N ′, λ′, E ′)
and for each n′ ∈ N ′, n′ ∈ JlabT,n(x)KT′ if and only
if, for all ℓ ∈ P , n ∈ λ(ℓ) if and only if n′ ∈ λ′(ℓ).

2) Let T = (N , λ, E) be an R-tree, let n ∈ N , and let
b ≥ 2 and d ≥ 0. There exists a unary FO2 + C query
dbeT,n,b,d(x) of quantifer rank d and counting bounded
by b such that, for each R-tree T′ = (N ′, λ′, E ′) and

5In the proofs of Lemmas 34 and 35 and Theorem 37, the variables used
in the FO2 + C formulae we construct, usually recursively, are x and y. If,
in the process, we define a unary FO2+C formula ψ(x), then, whenever we
write ψ(y) in a recursion step, we mean ψ(x) in which the variables x and
y have been swapped.

for each node n′ ∈ N ′, n′ ∈ JdbeT,n,b,d(x)KT′ if and
only if n≈↓b,d n

′.
3) Let T = (N , λ, E) be an R-tree with root r, let

n ∈ N , and let b ≥ 2 and d ≥ 0. There exists a
unary FO2+C query beqT,n,b,d(x) of quantifer rank d
and counting bounded by b such that, for each R-
tree T′ = (N ′, λ′, E ′) and for each node n′ ∈ N ′,
n′ ∈ JbeqT,n,b,d(x)KT′ if and only if n≈b,d n

′.
4) Let T = (N , λ, E) be an R-tree, and let b ≥ 2

and d, k ≥ 0. There exists a boolean FO2 + C
query bteT,b,d,k of quantifer rank 3d + 2 and count-
ing bounded by max(b, k) such that, for each R-tree
T′ = (N ′, λ′, E ′), JbteT,b,d,kKT′ = true if and only if
T≈b,d,k T′.

Proof:

1) Let T = {ℓ ∈ R | n ∈ JℓKT} and F = R \ T . Then,
labT,n(x) :=

(∧
ℓ∈T ℓ(x)

)
∧
(∧

ℓ∈F ¬ℓ(x)
)
.

2) We construct dbeT,n,b,d(x) recursively on d. We put
dbeT,n,b,0(x) := labT,n(x). Let d > 0. For m ∈ N ,
we introduce the following shorthand:

∃c1(m) :=

{
∃=|[m]↓b,d−1| if |[m]↓b,d−1| < b;
∃≥b otherwise.

Then,

dbeT,n,b,d(x) := labT,n(x)∧driT,n,b,d(x)∧dleT,n,b,d(x),

where, in the right-hand side, driT,n,b,d(x) is short for∧
(n,m)∈E

(
∃c1(m)y (E(x, y) ∧ dbeT,m,b,d−1(y))

)
and dleT,n,b,d(x) is short for

∀y

 ∨
(n,m)∈E

(E(x, y) ⇒ dbeT,m,b,d−1(y))

 .

Now, driT,n,b,d(x) expresses that, for each child m of n,
there exists a child m′ of the node of T′ represented by
x such that min(|[m]↓b,d−1|, b) = min(|[m′]↓b,d−1|, b).
The expression dleT,n,b,d(x) expresses that, for each
child m′ of the node of T′ represented by x, there
exists a child m of n such that m ≈↓b,d−1 m

′. Hence,
driT,n,b,d(x) ∧ dleT,n,b,d(x) implies that, for each child
m′ of the node of T′ represented by x, there ex-
ists a child m of n such that min(|[m]↓b,d−1|, b) =
min(|[m′]↓b,d−1|, b).

3) We construct beqT,n,b,d(x) recursively on d. We put
beqT,n,b,0(x) := dbeT,n,b,0(x). Let d > 0. If n = r,
then beqT,n,b,d(x) := dbeT,n,b,d(x)∧¬(∃y E(y, x)). If
n ̸= r and m is the parent of n, then beqT,n,b,d(x) :=
dbeT,n,b,d(x) ∧ ∃y

(
E(y, x) ∧ beqT,m,b,d−1(y)

)
.

4) We put bteT,b,d,k := te1T,b,d ∧ te2T,b,d,k, where
te1T,b,d expresses Condition 1 of Definition 29, and,

in conjunction with te1T,b,d, te2T,b,d,k expresses Con-
dition 2. First, te1T,b,d :=(∧

n∈N

(
∃x beqT,n,b,d(x)

))
∧∀x

(∨
n∈N

beqT,n,b,d(x)

)
,

which expresses that, for each node n in T, there exists
a node n′ in T′ such that n ≈b,d n

′, and vice versa.
Second,

te3T,b,d,k =

d∧
d′=0

∧
n∈N

t3sT,n,b,d′,k,

in which t3sT,n,b,d′,k expresses that the minimum of k
and the number of ancestors at distance 2d′+1 of nodes
of T′ that are (b, d′)-bounded equivalent to n equals the
minimum of k and the number of ancestors at distance
2d′+1 of nodes of T that are (b, d′)-bounded equivalent
to n. So, for n ∈ N , let Kd′(n) be the set of ancestors
at distance 2d′+1 of nodes in T that are (b, d′)-bounded
equivalent to n. We introduce the following shorthand:

∃c2(n) :=

{
∃=|Kd′ (n)| if |Kd′(n)| < k;
∃≥k otherwise.

Then, t3sT,n,b,d′,k := ∃c2(n)x dsc2d′+1,φ(x), where
φ(y) := beqT,n,b,d′(y).

Let φ be an FO query, and let Pφ ⊆ P be the set of all label
predicates that occur in φ. Obviously, Pφ is finite. Let T =
(N , λ, E). The φ-restriction of T is the tree Tφ = (N , λφ, E)
where, for all ℓ ∈ P ,

λφ(ℓ) =

{
λ(ℓ) if ℓ ∈ Pφ;
∅ otherwise.

The following is now immediate:

Lemma 36. Let φ be an FO query, and let T = (N , λ, E).
Let Tφ be the φ-restriction of T. Then, JφKT = JφKTφ

.

So, without loss of generality, we may assume that only a
finite number of label predicates are at play.

We are now finally ready to prove our main result:

Theorem 37. Let φ be a unary FO query. There exists an
FO2 + C query ψ that is equivalent to φ on trees.

Proof: By Lemma 36, we may restrict our attention to
Pφ-trees, with Pφ ⊆ P the label predicates actually occurring
in φ.

Let r = qr(e), d = 7r − 1, b = r + 2, and k = 4d+ 4. For
a Pφ-tree T = (N , λ, E) and n ∈ N , we define the predicate

squeryT,n(x) := bteT,b,d,k ∧ beqT,n,b,d(x),

with beqT,n,b,d(x) and bteT,b,d,k the queries introduced in
Lemma 35 to expresses (b, d)-bounded equivalence of tree
nodes, respectively (b, d, k)-bounded equivalence of trees. By
Lemma 35, squeryT,n(x) is a unary FO2 + C query of
quantifier rank 3d + 2 and counting bounded by max(b, k).
Since we only consider the finitely many label predicates

occurring in r, there are only finitely many such formulae up
to equivalence. For a Pφ-tree T′ = (N ′, λ′, E ′) and n′ ∈ N ′,
n′ ∈ JsqueryT,n(x)KT′ if and only if (T, n)≈r (T′, n′). Hence,
by Corollary 33, if n′ ∈ JsqueryT,n(x)KT′ , then n′ ∈ JφKT′ if
and only if n ∈ JφKT.

Now, let T be the set of all Pφ-trees (over a suitable
universe of nodes). We define6

query(x) :=
∨
T∈T

∨
n∈JφKT

squeryT,n(x).

While the above disjunction is infinite, it contains only finitely
many disjuncts up to equivalence. Hence, after elimination of
duplicates, query(x) is a unary FO2 + C query of quantifier
rank 3d + 2 and counting bounded by max(b, k). From the
properties of the disjuncts, it follows that, for a Pφ-tree T′ =
(N ′, λ′, E ′), Jquery(x)KT′ ⊆ JφKT′ . Conversely, assume that,
for a Pφ-tree T′ = (N ′, λ′, E ′) and n′ ∈ N ′, n′ ∈ Jφ′KT′ . By
construction, n′ ∈ JsqueryT′,n′(x)KT′ ⊆ Jquery(x)KT′ . Thus,
Jquery(x)KT′ = JφKT′ .

Corollary 38. Let φ be a boolean FO query. There exists an
FO2 + C query which is equivalent to φ on trees.

Proof: Let φ′(x) := (x = x) ∧ φ. By Theorem 37, there
is a unary FO2 + C query ψ(x) which is equivalent to φ′(x)
on trees. Then, clearly, ∃xψ(x) is a boolean FO2 + C query
which is equivalent to φ on trees.

Finally, our main result also has ramifications for FO
queries of arbitrary arity:

Corollary 39. Let k ≥ 1 and φ be an FO query of arity k.
There exists a query in FOk+1 + C which is equivalent to φ
on trees.

Proof: We prove this by induction on k. The induction
basis, k = 1, is provided by Theorem 37. For the induction
step, assume as induction hypothesis that, for some k > 1,
every FO query of arity k−1 is equivalent to an FOk+C query.
Let φ(x1, . . . , xk) be an FO query of arity k. Let ℓ ∈ P be a
label predicate not occurring in φ, and consider the (k−1)-ary
FO + C formula φ′(x1, . . . , xk−1) :=

∃=1xk ℓ(xk) ∧ ∀xk (ℓ(xk) ⇒ φ(x1, . . . , xk)) .

By the induction hypothesis, there is a (k − 1)-ary FOk + C
query ψ′ equivalent to φ′ on trees. Let ψ(x1, . . . , xk) be the
k-ary FOk+1 + C query obtained from ψ′(x1, . . . , xk−1) by
substituting each subformula ℓ(xi), 1 ≤ i ≤ k − 1, by xi =
xk. (We assume that xk does not occur in ψ′(x1, . . . , xk−1).)
Clearly, ψ is equivalent to φ.

Obviously, our main motivation to include label predicates
is that, without them, trees would not be very helpful as data
structures. Corollary 39 shows that their presence may also be
important at a more fundamental level.

6An empty disjunction is interpreted as false.

IX. CONCLUSION AND FUTURE WORK

Here, we proved that unary and boolean FO queries on
finite, rooted, unranked, unordered, node-labeled trees can be
expressed in FO2 + C. As a corollary, k-ary FO queries
on trees, k ≥ 2, can be expressed in FOk+1 + C. To
achieve this result, we developed a toolkit to exploit locally
bounded equivalences. This toolkit may also be useful to study
equivalences between other query languages (cf. the work of
Gyssens et al. [12] and Fletcher et al. [13]). Of course, there
are several aspects related to our work which were not covered
here. For example, what is the complexity of our translation
from FO to FO2 + C? Can such a translation help in solving
satisfiability questions? These are obviously topics for future
research. Other questions raised by this work are the following:

• It is well known that FO can be algebratized to the
relational algebra. This algebratization had an enormous
impact on development of database management sys-
tems: queries are first translated to relational algebra
expressions, then optimized using rewrite rules, and
finally evaluated using specialized data structures and
algorithms. It is also known that, for unary graph queries,
FO2 is equivalent with the semi-join algebra, and that,
for binary graph queries, FO3 is equivalent with the
calculus of relations (Tarski’s Relation Algebra). Of
course, these algebratizations also apply to tree models. It
would therefore be of interest to find an algebratization
for FO2 + C. Actually, we suggest that, on unranked,
unordered trees, this could be the Core Path + counting
projections language introduced by Fletcher et al. [13]. As
for optimization, we suggest translations that introduce
semi-joins rather than relational compositions, as studied
by Hellings et al. [21]. Indeed, semi-joins and counting
are very efficiently supported in database systems.

• A natural direction for future research is to investigate (or
even characterize) on which other classes of structures
(beyond the trees we considered here) FO collapses to
FO2 + C.

• Another direction for future research is a finer analysis
of the relationship between various finite-variable logics.
For example, it follows from our paper that unary FO3

queries on trees can be translated to unary FO2 + C
queries. It would be of interest to determine to which
extent counting quantifiers could be limited in the trans-
lation. For example, would quantifiers which can only
count up to, say 3, suffice? Similar questions could be
asked for unary FOk queries, k > 3. Of course, one
must also consider the relationship between the sizes of
the original query and the corresponding FO2+C query.

• To bootstrap our main result on the translation of unary
FO tree queries to FO2+C to the translation of k-ary FO
queries to FOk+1+C, we took advantage of the presence
of label predicates. When we set up the context in which
we studied the research question solved in this paper,
we included label predicates from a purely applicational
point of view: without them, trees would be rather useless

as a means to store data. It was therefore surprising for
us to see that they also play a more fundamental role. It
would therefore be interesting to see if the bootstrapping
can also be realized without resorting to label predicates.

ACKNOWLEDGMENTS

We thank the reviewers for their constructive comments
which helped us to improve the paper.

REFERENCES

[1] P. Barceló and L. Libkin, “Temporal logics over unranked trees,” in
20th IEEE Symposium on Logic in Computer Science (LICS 2005), 26-
29 June 2005, Chicago, IL, USA, Proceedings. IEEE Computer Society,
2005, pp. 31–40.

[2] M. Bojańczyk, “Effective characterizations of tree logics,” in Proceed-
ings of the 27th ACM SIGMOD-SIGACT-SIGART Symposium on Prin-
ciples of Database Systems, PODS 2008, June 9-11, 2008, Vancouver,
BC, Canada, M. Lenzerini and D. Lembo, Eds. ACM, 2008, pp. 53–66.

[3] L. Libkin, “Logics for unranked trees: An overview,” Log. Methods
Comput. Sci., vol. 2, no. 3, 2006.

[4] ——, Elements of Finite Model Theory, ser. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2004.

[5] N. Immerman and D. Kozen, “Definability with bounded number of
bound variables,” Inf. Comput., vol. 83, no. 2, pp. 121–139, 1989.

[6] M. Benedikt, L. Libkin, and F. Neven, “Logical definability and query
languages over ranked and unranked trees,” ACM Trans. Comput. Log.,
vol. 8, no. 2, p. 11, 2007.

[7] H. Straubing, Finite Automata, Formal Logic, and Circuit Complexity,
ser. Progress in Theoretical Computer Science. Birkhauser, 1994.

[8] W. Hanf, “Model-theoretic methods in the study of elementary logic,”
in The Theory of Models, ser. Studies in Logic and the Foundations
of Mathematics, J. Addison, L. Henkin, and A. Tarski, Eds. North-
Holland, 2014, pp. 132–145.

[9] H. Gaifman, “On local and non-local properties,” in Proceedings of
the Herbrand Symposium, ser. Studies in Logic and the Foundations
of Mathematics, J. Stern, Ed. Elsevier, 1982, vol. 107, pp. 105–135.

[10] R. Fagin, L. Stockmeyer, and M. Vardi, “On monadic NP vs monadic
co-NP,” Inf. Comput., vol. 120, no. 1, pp. 78–92, 1995.

[11] M. Benedikt and L. Segoufin, “Regular tree languages definable in FO
and in FOmod ,” ACM Trans. Comput. Log., vol. 11, no. 1, pp. 4:1–4:32,
2009.

[12] M. Gyssens, J. Paredaens, D. Van Gucht, and G. H. L. Fletcher,
“Structural characterizations of the semantics of XPath as navigation tool
on a document,” in Proceedings of the 25th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, June 26-28,
2006, Chicago, Illinois, USA, S. Vansummeren, Ed. ACM, 2006, pp.
318–327.

[13] G. H. L. Fletcher, M. Gyssens, J. Paredaens, D. Van Gucht, and
Y. Wu, “Structural characterizations of the navigational expressiveness
of relation algebras on a tree,” J. Comput. Syst. Sci., vol. 82, no. 2, pp.
229–259, 2016.

[14] W. Charatonik and P. Witkowski, “Two-variable logic with counting and
trees,” ACM Trans. Comput. Log., vol. 17, no. 4, p. 31, 2016.

[15] M. Marx, “Conditional XPath,” ACM Trans. Database Syst., vol. 30,
no. 4, pp. 929–959, 2005.

[16] B. ten Cate and M. Marx, “Navigational XPath: calculus and algebra,”
SIGMOD Rec., vol. 36, no. 2, pp. 19–26, 2007.

[17] M. Marx and M. de Rijke, “Semantic characterizations of navigational
XPath,” SIGMOD Rec., vol. 34, no. 2, pp. 41–46, 2005.

[18] M. Otto, “Graded modal logic and counting bisimulation,”
arXiv:1910.00039, 2019.

[19] J. Hellings, “On Tarski’s Relation Algebra: querying trees and chains
and the semi-join algebra,” Ph.D. dissertation, Hasselt University and
transnational University of Limburg, 2018.

[20] J. Hellings, Y. Wu, M. Gyssens, and D. Van Gucht, “The power of
Tarski’s Relation Algebra on trees,” J. Log. Algebr. Methods Program.,
vol. 126, 2022.

[21] J. Hellings, C. L. Pilachowski, D. Van Gucht, M. Gyssens, and Y. Wu,
“From Relation Algebra to Semi-join Algebra: An approach to graph
query optimization,” Comput. J., vol. 64, no. 5, pp. 789–811, 2021.

