Expressive Completeness of Two-Variable First-Order Logic with Counting for First-Order Logic Queries on Rooted Unranked Trees

Jelle Hellings McMaster University

Main Result Let φ be an unary *first-order* query. There exists an $FO^2 + C$ query ψ that is equivalent to φ on node-labeled, unranked, unordered trees. (Here, we ignore node labels.)

FO²+C Queries on Trees Let φ be a unary first-order query and \mathcal{T} a tree. 1. There exists an unary FO^2+C query $tq_{\mathcal{T}}$ with

$$[\mathsf{tq}_{\mathcal{T}}]_{\mathcal{T}'} \neq \emptyset$$

if and only if trees \mathcal{T} and \mathcal{T}' are isomorphic.

- **2.** There exists an unary FO^2+C query $tn_{\mathcal{T}}$ with $[\operatorname{tn}_{\mathscr{T}}]_{\mathscr{T}} = [\varphi]_{\mathscr{T}}.$
- **3**. Let \mathbb{T} be the set of all trees. The query φ is equivalent to FO²+C query

$$Q_{\varphi} := \bigvee_{\mathcal{T}' \in \mathbb{T}} \left((\exists v \ (\mathsf{tq}_{\mathcal{T}'})) \land \mathsf{tn}_{\mathcal{T}'} \right)$$

Main challenge Restrict \mathbb{T} to a *finite set*. Example

 $(\exists^{=1}v (\operatorname{root}(v) \land (\exists^{=3}w \operatorname{edge}(v, w)) \land C_1 \land C_2 \land C_3),$ $C_1 := \exists^{=1} w (\operatorname{edge}(v, w) \land (\exists^{=2} v \operatorname{edge}(w, v)) \land$ $(\exists^{=2}v \text{ edge}(w, v) \land \text{leaf}(v)));$ $C_2 := \exists^{=1} w (edge(v, w) \land leaf(w));$ $C_3 := \exists^{=1} w \ (\mathsf{edge}(v, w) \land (\exists^{=3} v \ \mathsf{edge}(w, v)) \land$ $(\exists^{=3}v \text{ edge}(w, v) \land \text{leaf}(v))).$

Marc Gyssens Hasselt University Jan Van den Bussche Hasselt University

Using Hanf Locality

Let $\mathcal{T} = (\mathcal{N}, \mathcal{E})$ be a tree and let $n \in \mathcal{N}$. The *d-neighborhood* around *n* is the set of nodes (subtree) reachable from *n* via a path of at-most

- d edges.
- Two trees are (d, m)-equivalent if they have the *same amount* (up-till-*m*) of each *d*-neighborhood.

Example

Theorem (Fagin et al.)

- 1. If every node has at-most f children, then there is a finite number of distinct d-neighborhoods (up-to-isomorphisms).
- 2. If every node has at-most f children, then there exists d, m that only depend on r, f such that if two trees are (d, m)-equivalent, then they are indistinguishable by r-round EF-games.

Limitations on *unranked* trees

All four nodes have distinct *d*-neighborhoods, $d \ge 1$.

Our main technical contribution A first-order locality notion that takes into account *branching* and is expressible in FO^2+C .

Dirk Van Gucht Indiana University

let $n_1 \in N_1, n_2 \in N_2$.

size (up-till-*b*).

(b, d - 1)-bounded equivalent.

Example

(3, 1)-bounded equivalence classes

Trees \mathcal{T}_1 and \mathcal{T}_2 are (b, d, k)-bounded equivalent if "they are similar" with respect to sets-of-at-most-k nodes that are (b, d)-bounded equivalent.

Theorem

Bounded Equivalence on Nodes and Trees Let $\mathcal{T}_1 = (\mathcal{N}_1, \mathcal{E}_1), \mathcal{T}_2 = (\mathcal{N}_2, \mathcal{E}_2)$ be two trees, and

Nodes *n*₁ and *n*₂ are *downward* (*b*, *d*)-*bounded equivalent* ($n_1 \approx_{\downarrow b,d} n_2$) if either d = 0 or their children can be grouped into equivalence classes based on $\approx_{\downarrow b,d-1}$, and these classes have *the same*

Nodes n_1 and n_2 are (b, d)-bounded equivalent if $n_1 \approx_{\downarrow b,d} n_2$ and their parents (if any) are

1. The above notions are FO^2+C expressible. 2. There exists a finite number of distinct (b, d)-bounded equivalence classes. 3. Let $r \ge 0$, and $d = 7^r - 1$, b = r + 2, k = 4d + 4. If $\mathcal{T}_1 \approx_{b,d,k} \mathcal{T}_2$ and $n_1 \approx_{b,d} n_2$, then n_1 and n_2 are indistinguishable by r-round EF-games.