Expressive Completeness of Two-Variable First-Order Logic with Counting for First-Order Logic Queries on Rooted Unranked Trees

Jelle Hellings ${ }^{\dagger} \quad$ Marc Gyssens ${ }^{\ddagger}$ Jan Van den Bussche ${ }^{\ddagger} \quad$ Dirk Van Gucht ${ }^{\S}$
${ }^{\dagger}$ Department of Computing and Software McMaster University Hamilton, Ontario, Canada https://jhellings.nl
\# Data Science Institute
Hasselt University
Diepenbeek, Belgium
§Luddy School of Informatics, Computing, and Engineering
Indiana University
Bloomington, Indiana, USA

The Result

Theorem (Theorem 37)
Let φ be an unary first-order query.
There exists an $\mathrm{FO}^{2}+\mathrm{C}$ query ψ that is equivalent to φ on trees.

The Result

Theorem (Theorem 37)

Let φ be an unary first-order query.
There exists an $\mathrm{FO}^{2}+\mathrm{C}$ query ψ that is equivalent to φ on trees.

- Unary first-order queries on graphs express node predicates: operations to restrict the considered nodes within more complex graph queries.
- $\mathrm{FO}^{2}+\mathrm{C}$: first-order logic, restricted to two variables, with counting quantifiers such as

$$
\exists v\left(\exists^{=3} w \operatorname{edge}(v, w)\right), \quad \forall v\left(\exists^{\leq 5} w \text { edge }(v, w)\right) .
$$

- Trees: node-labeled, unranked, and unordered.

Unranked Nodes do not have a fixed number of children.
Unordered Siblings are not ordered.

Extensions Edge-labeled trees, forests,

Related Work

- Similar results are known on strings with a successor relationship.
- Marx and de Rijke considered ordered trees with a descendant- and sibling-axis. They showed that unary FO^{2} queries are equivalent to Core XPath.
- ten Cate and Marx showed that binary FO queries are equivalent to Core XPath 2.0.
- Marx showed that binary first-order queries are equivalent to Conditional XPath (Conditional XPath is an algebraization of FO^{3} with a limited transitive closures).
- Hellings et al. showed that unary Conditional XPath queries are equivalent to a variant of FO^{2} with fixpoints.

$\mathrm{FO}^{2}+\mathrm{C}$ Queries on Trees

$\mathrm{FO}^{2}+\mathrm{C}$ Queries on Trees

- Root with three children:
$\left(\exists^{=1} \vee\left(\operatorname{root}(v) \wedge\left(\exists^{=3} w \operatorname{edge}(v, w)\right) \wedge C_{1} \wedge C_{2} \wedge C_{3}\right)\right.$.

$\mathrm{FO}^{2}+\mathrm{C}$ Queries on Trees

- Root with three children:

$$
\left(\exists^{=1} \vee\left(\operatorname{root}(v) \wedge\left(\exists^{=3} w \operatorname{edge}(v, w)\right) \wedge C_{1} \wedge C_{2} \wedge C_{3}\right)\right.
$$

- One has two children (all leaves):

$$
\begin{aligned}
C_{1}:=\exists^{=1} w\left(\operatorname{edge}(v, w) \wedge\left(\exists^{=2} v \operatorname{edge}(w, v)\right) \wedge\right. \\
\left.\left(\exists^{=2} v \operatorname{edge}(w, v) \wedge \operatorname{leaf}(v)\right)\right) .
\end{aligned}
$$

- One is a leaf:

$$
C_{2}:=\exists^{=1} w(\operatorname{edge}(v, w) \wedge \operatorname{leaf}(w))
$$

- One has three children (all leaves):

$$
\begin{aligned}
& C_{3}:=\exists^{=1} w(\operatorname{edge}(v, w) \wedge\left(\exists^{=3} v \operatorname{edge}(w, v)\right) \wedge \\
&\left.\left(\exists^{=3} v \operatorname{edge}(w, v) \wedge \operatorname{leaf}(v)\right)\right) .
\end{aligned}
$$

$\mathrm{FO}^{2}+\mathrm{C}$ Queries on Trees

Lemma

Let φ be a unary first-order query, let $\mathscr{T}=(\mathcal{N}, \mathcal{E})$ be an unlabeled tree, and let $n \in \mathcal{N}$.

1. There exists an unary $\mathrm{FO}^{2}+\mathrm{C}$ query $\mathrm{tq}_{\mathscr{T}}$ such that

$$
\llbracket \mathrm{tq}_{\mathscr{T}} \rrbracket_{\mathscr{T}^{\prime}} \neq \emptyset
$$

if and only if trees \mathscr{T} and \mathscr{T}^{\prime} are isomorphic.
2. There exists an unary $\mathrm{FO}^{2}+\mathrm{C}$ query $\operatorname{tn}_{\mathscr{T}}$ such that

$$
\llbracket \operatorname{tn}_{\mathscr{F}} \rrbracket_{\mathscr{F}}=\llbracket \varphi \rrbracket_{\mathscr{F}} .
$$

$\mathrm{FO}^{2}+\mathrm{C}$ Queries on Trees

Lemma

Let φ be a unary first-order query, let $\mathscr{T}=(\mathcal{N}, \mathcal{E})$ be an unlabeled tree, and let $n \in \mathcal{N}$.

1. There exists an unary $\mathrm{FO}^{2}+\mathrm{C}$ query $\mathrm{tq}_{\mathscr{T}}$ such that

$$
\llbracket \mathrm{tq}_{\mathscr{T}} \rrbracket_{\mathscr{T}^{\prime}} \neq \emptyset
$$

if and only if trees \mathscr{T} and \mathscr{T}^{\prime} are isomorphic.
2. There exists an unary $\mathrm{FO}^{2}+\mathrm{C}$ query $\mathrm{tn}_{\mathscr{T}}$ such that

$$
\llbracket \operatorname{tn}_{\mathscr{T}} \rrbracket_{\mathscr{T}}=\llbracket \varphi \rrbracket_{\mathscr{T}} .
$$

3. Let \mathbb{T} be the set of all trees. The query φ is equivalent to $\mathrm{FO}^{2}+\mathrm{C}$ query

$$
Q_{\varphi}:=\bigvee_{\mathscr{T}^{\prime} \in \mathbb{T}}\left(\left(\exists v\left(\mathrm{tq}_{\mathscr{T}^{\prime}}\right)\right) \wedge \mathrm{tn}_{\mathscr{T}^{\prime}}\right)
$$

$\mathrm{FO}^{2}+\mathrm{C}$ Queries on Trees

Lemma

Let φ be a unary first-order query, let $\mathscr{T}=(\mathcal{N}, \mathcal{E})$ be an unlabeled tree, and let $n \in \mathcal{N}$.

1. There exists an unary $\mathrm{FO}^{2}+\mathrm{C}$ query $\mathrm{tq}_{\mathscr{T}}$ such that

$$
\llbracket \mathrm{tq}_{\mathscr{T}} \rrbracket_{\mathscr{T}^{\prime}} \neq \emptyset
$$

if and only if trees \mathscr{T} and \mathscr{T}^{\prime} are isomorphic.
2. There exists an unary $\mathrm{FO}^{2}+\mathrm{C}$ query $\mathrm{tn}_{\mathscr{T}}$ such that

$$
\llbracket \operatorname{tn}_{\mathscr{T}} \rrbracket_{\mathscr{T}}=\llbracket \varphi \rrbracket_{\mathscr{T}} .
$$

3. Let \mathbb{T} be the set of all trees. The query φ is equivalent to $\mathrm{FO}^{2}+\mathrm{C}$ query

$$
Q_{\varphi}:=\bigvee_{\mathscr{T}^{\prime} \in \mathbb{T}}\left(\left(\exists v\left(\mathrm{tq}_{\mathscr{T}^{\prime}}\right)\right) \wedge \mathrm{tn}_{\mathscr{T}^{\prime}}\right)
$$

Main challenge Argue that we can conceptually restrict \mathbb{T} to a finite set.

Hanf Locality

Let $\mathscr{T}=(\mathcal{N}, \mathcal{E})$ be a tree and let $n \in \mathcal{N}$.
Definition
The d-neighborhood around n is the set of nodes (subtree) reachable from n via a path of at-most d edges.

Definition

Two trees are (d, m)-equivalent if they have the same amount (up-till-m) of each d-neighborhood.

Hanf Locality

Let $\mathscr{T}=(\mathcal{N}, \mathcal{E})$ be a tree and let $n \in \mathcal{N}$.
Definition
The d-neighborhood around n is the set of nodes (subtree) reachable from n via a path of at-most d edges.

Definition

Two trees are (d, m)-equivalent if they have the same amount (up-till-m) of each d-neighborhood.

Hanf Locality

Let $\mathscr{T}=(\mathcal{N}, \mathcal{E})$ be a tree and let $n \in \mathcal{N}$.
Definition
The d-neighborhood around n is the set of nodes (subtree) reachable from n via a path of at-most d edges.

Definition

Two trees are (d, m)-equivalent if they have the same amount (up-till-m) of each d-neighborhood.

Hanf Locality

Let $\mathscr{T}=(\mathcal{N}, \mathcal{E})$ be a tree and let $n \in \mathcal{N}$.

Definition

The d-neighborhood around n is the set of nodes (subtree) reachable from n via a path of at-most d edges.

Definition

Two trees are (d, m)-equivalent if they have the same amount (up-till-m) of each d-neighborhood.

Lemma (Fagin et al.)

If every node has at-most f children, then there is a finite number of distinct d-neighborhoods (up-to-isomorphisms).

Hanf Locality

Let $\mathscr{T}=(\mathcal{N}, \mathcal{E})$ be a tree and let $n \in \mathcal{N}$.

Definition

The d-neighborhood around n is the set of nodes (subtree) reachable from n via a path of at-most d edges.

Definition

Two trees are (d, m)-equivalent if they have the same amount (up-till-m) of each d-neighborhood.

Theorem (Fagin et al.)

Let r be a positive integer. If every node has at-most f children, then there exists d, m that only depend on r, f such that if two trees are (d, m)-equivalent, then they are indistinguishable by r-round EF-games.

Hanf Locality

Hanf locality: we can restrict the depth of trees we consider.

Limitations of Hanf Locality
We consider unranked trees!

All four nodes have distinct d-neighborhoods, $d \geq 1$.

Hanf Locality

Hanf locality: we can restrict the depth of trees we consider.

Limitations of Hanf Locality

We consider unranked trees!

All four nodes have distinct d-neighborhoods, $d \geq 1$.

Our main technical contribution
For trees, we need a stronger locality notion that takes into account branching.
Paper: provide such a notion and show how it relates to $\mathrm{FO}^{2}+\mathrm{C}$ and first-order expressivity.

Bounded Equivalence on Nodes

Let $\mathscr{T}_{1}=\left(\mathcal{N}_{1}, \mathcal{E}_{1}\right)$ and $\mathscr{T}_{2}=\left(\mathcal{N}_{2}, \mathcal{E}_{2}\right)$ be two trees.

Definition (Definition 2)

Nodes $n_{1} \in \mathcal{N}_{1}, n_{2} \in \mathcal{N}_{2}$ are downward (b, d)-bounded equivalent $\left(n_{1} \approx_{\downarrow b, d} n_{2}\right)$ if

- (they have the same node labels); and
- $d=0$ or else the children of n_{1}, n_{2} can be grouped into equivalence classes based on $\approx_{\downarrow b, d-1}$, and these classes for the children of n_{1}, n_{2} have the same size (up-till-b).

Definition (Definition 5)

Nodes $n_{1} \in \mathcal{N}_{1}, n_{2} \in \mathcal{N}_{2}$ are (b, d)-bounded equivalent $\left(n_{1} \approx_{b, d} n_{2}\right)$ if

- $d=0$ and $n_{1} \approx_{\downarrow b, 0} n_{2}$; or
- $n_{1} \approx_{\downarrow b, d} n_{2}$ and both n_{1} and n_{2} are roots; or
- $n_{1} \approx_{\downarrow b, d} n_{2}, n_{1}$ and n_{2} have parents p_{1} and p_{2}, and $p_{1} \approx_{b, d-1} p_{2}$.

Bounded Equivalence on Nodes

Bounded Equivalence on Nodes

($b, 0$)-bounded equivalence classes

Bounded Equivalence on Nodes

(2, 1)-bounded equivalence classes

Bounded Equivalence on Nodes

(3, 1)-bounded equivalence classes

Bounded Equivalence on Nodes

(3, 2)-bounded equivalence classes

(uncolored nodes are all in distinct equivalence classes)

Bounded Equivalence on Nodes

The 2-neighborhoods of (3, 2)-bounded equivalent nodes are not isomorph! (but there does exist a 'unique' minimum-sized 2-neighborhood)

Bounded Equivalence on Nodes

Theorem (Lemma 34(3) and consequence of Theorem 37)

1. There exists a finite number of distinct (b, d)-bounded equivalence classes (with respect to a given set of node labels).
2. Given $a(b, d)$-bounded equivalence class C, there exists an $\mathrm{FO}^{2}+C$ query q such that

$$
n \in \llbracket q \rrbracket_{\mathscr{T}} \text { if and only if } n \in C
$$

for every tree \mathscr{T}.

Bounded Equivalence on Trees

Let $\mathscr{T}_{1}=\left(\mathcal{N}_{1}, \mathcal{E}_{1}\right)$ and $\mathscr{T}_{2}=\left(\mathcal{N}_{2}, \mathcal{E}_{2}\right)$ be two trees.

Definition (Definition 29)

Trees \mathscr{T}_{1} and \mathscr{T}_{2} are (b, d, k)-bounded equivalent $\left(\mathscr{T}_{1} \approx_{b, d, k} \mathscr{T}_{2}\right)$ if

- for each node $n_{1} \in \mathcal{N}_{1}$, there is a node $n_{2} \in \mathcal{N}_{2}$ with $n_{1} \approx_{b, d} n_{2}$ and vice versa; and
- for all nodes $m \in\left(\mathcal{N}_{1} \cup \mathcal{N}_{2}\right)$ such that $M_{1} \subseteq \mathcal{N}_{1}$ and $M_{2} \subseteq \mathcal{N}_{2}$ are all nodes that are (b, d)-bounded equivalent to m, the (b, d^{\prime})-equivalence classes of ancestors of nodes in M_{1} and M_{2} at distance $2 d^{\prime}+1,0 \leq d^{\prime} \leq d$, must have the same size (up-till-k).

Theorem (Lemma 34(4))

Given a tree \mathscr{T}, there exists a Boolean $\mathrm{FO}^{2}+\mathrm{C}$ query q such that

$$
\llbracket q \rrbracket_{\mathscr{T}^{\prime}} \neq \emptyset \text { if and only if } \mathscr{T} \approx_{b, d, k} \mathscr{T}^{\prime} .
$$

Bounded Equivalence on Trees

Let $\mathscr{T}_{1}=\left(\mathcal{N}_{1}, \mathcal{E}_{1}\right)$ and $\mathscr{T}_{2}=\left(\mathcal{N}_{2}, \mathcal{E}_{2}\right)$ be two trees.

Definition (Definition 29)

Trees \mathscr{T}_{1} and \mathscr{T}_{2} are (b, d, k)-bounded equivalent $\left(\mathscr{T}_{1} \approx_{b, d, k} \mathscr{T}_{2}\right)$ if

- for each node $n_{1} \in \mathcal{N}_{1}$, there is a node $n_{2} \in \mathcal{N}_{2}$ with $n_{1} \approx_{b, d} n_{2}$ and vice versa; and
- for all nodes $m \in\left(\mathcal{N}_{1} \cup \mathcal{N}_{2}\right)$ such that $\mathcal{M}_{1} \subseteq \mathcal{N}_{1}$ and $\mathcal{M}_{2} \subseteq \mathcal{N}_{2}$ are all nodes that are (b, d)-bounded equivalent to m, the (b, d^{\prime})-equivalence classes of ancestors of nodes in M_{1} and M_{2} at distance $2 d^{\prime}+1,0 \leq d^{\prime} \leq d$, must have the same size (up-till-k).

Theorem (Theorem 32)

Let $n_{1} \in \mathcal{N}_{1}, n_{2} \in \mathcal{N}_{2}, r \geq 0$, and $d=7^{r}-1, b=r+2, k=4 d+4$.
If $\mathscr{T}_{1} \approx_{b, d, k} \mathscr{T}_{2}$ and $n_{1} \approx_{b, d} n_{2}$, then n_{1} and n_{2} are indistinguishable by r-round EF-games.

Conclusion and Future Work

We have shown that any unary first-order query on node-labeled, unranked, and unordered trees can be rewritten into an equivalent query in $\mathrm{FO}^{2}+\mathrm{C}$.

Future work

- Succinctness?
- Can we generalize our results to other classes of graphs? E.g., forests or restricted classes of DAGs.
- Can we refine our results, e.g., based on the number of variables used: can we relate FO^{n} to $\mathrm{FO}^{2}+\mathrm{C}$ with counting quantifiers that can only count to some-function-of-n?
- How does our result impact practical query answering on trees? E.g., can an algebraization of $\mathrm{FO}^{2}+\mathrm{C}$ aid in semi-join-based query optimizations?

References

[1] Balder ten Cate and Maarten Marx. "Navigational XPath: Calculus and Algebra". In: SIGMOD Record 36.2 (2007), pp. 19-26. DoI: 10.1145/1328854. 1328858.
[2] Ronald Fagin, Larry J. Stockmeyer, and Moshe Y. Vardi. "On Monadic NP vs Monadic co-NP". In: Information and Computation 120.1 (1995), pp. 78-92. DoI: 10.1006/inco. 1995.1100.
[3] Jelle Hellings, Catherine L Pilachowski, Dirk Van Gucht, Marc Gyssens, and Yuqing Wu. "From Relation Algebra to Semi-join Algebra: An Approach to Graph Query Optimization". In: The Computer Journal 64.5 (2020), pp. 789-811. DoI: 10.1093/comjnl/bxaa031.
[4] Maarten Marx. "Conditional XPath". In: ACM Transactions on Database Systems 30.4 (2005), pp. 929-959. DOI: 10.1145/1114244. 1114247.
[5] Maarten Marx and Maarten de Rijke. "Semantic Characterizations of Navigational XPath". In: SIGMOD Record 34.2 (2005), pp. 41-46. DoI: 10.1145/1083784. 1083792.

