Expressive Completeness of Two-Variable First-Order Logic with Counting for First-Order Logic Queries on Rooted Unranked Trees

Jelle Hellings[†] Marc Gyssens[‡] Jan Van den Bussche[‡]

Dirk Van Gucht[§]

[†] Department of Computing and Software McMaster University Hamilton, Ontario, Canada https://jhellings.nl

> [‡]Data Science Institute Hasselt University Diepenbeek, Belgium

[§]Luddy School of Informatics, Computing, and Engineering Indiana University Bloomington, Indiana, USA

The Result

Theorem (Theorem 37)

Let φ be an unary first-order query. There exists an FO²+C query ψ that is equivalent to φ on trees.

The Result

Theorem (Theorem 37) Let φ be an unary first-order query. There exists an FO²+C query ψ that is equivalent to φ on trees.

- Unary first-order queries on graphs express node predicates: operations to restrict the considered nodes within more complex graph queries.
- ► FO²+C: first-order logic, restricted to two variables, with counting quantifiers such as

$$\exists v \ (\exists^{=3} w \ \mathsf{edge}(v, w)), \qquad \forall v \ (\exists^{\leq 5} w \ \mathsf{edge}(v, w)).$$

Trees: node-labeled, unranked, and unordered. Unranked Nodes do not have a fixed number of children. Unordered Siblings are not ordered.

Extensions Edge-labeled trees, forests,

Related Work

Similar results are known on strings with a successor relationship.

- Marx and de Rijke considered ordered trees with a descendant- and sibling-axis. They showed that unary FO² queries are equivalent to Core XPath.
- ▶ ten Cate and Marx showed that *binary* FO *queries* are equivalent to *Core XPath 2.0*.
- Marx showed that *binary first-order queries* are equivalent to *Conditional XPath* (Conditional XPath is an algebraization of FO³ with a limited transitive closures).
- Hellings et al. showed that unary Conditional XPath queries are equivalent to a variant of FO² with fixpoints.

Root with three children:

 $(\exists^{=1}\mathbf{v} (\operatorname{root}(\mathbf{v}) \land (\exists^{=3}\mathbf{w} \operatorname{edge}(\mathbf{v}, \mathbf{w})) \land C_1 \land C_2 \land C_3).$

 $(\exists^{=1}\mathbf{v} (\operatorname{root}(\mathbf{v}) \land (\exists^{=3}\mathbf{w} \operatorname{edge}(\mathbf{v}, \mathbf{w})) \land C_1 \land C_2 \land C_3).$

One has two children (all leaves):

$$C_1 := \exists^{=1} w \; (\text{edge}(v, w) \land (\exists^{=2} v \; \text{edge}(w, v)) \land (\exists^{=2} v \; \text{edge}(w, v) \land \text{leaf}(v))).$$

One is a leaf:

 $C_2 := \exists^{=1} w \; (edge(v, w) \land \; leaf(w)).$

• One has three children (all leaves):

$$C_3 := \exists^{=1} w \; (edge(v, w) \land (\exists^{=3} v \; edge(w, v)) \land (\exists^{=3} v \; edge(w, v) \land leaf(v))).$$

Lemma

Let φ be a unary first-order query, let $\mathcal{T} = (\mathcal{N}, \mathcal{E})$ be an unlabeled tree, and let $n \in \mathcal{N}$.

1. There exists an unary FO^2+C query $tq_{\mathcal{T}}$ such that

 $[\![\mathsf{tq}_{\mathcal{T}}]\!]_{\mathcal{T}'} \neq \emptyset$

if and only if trees \mathcal{T} and \mathcal{T}' are isomorphic.

2. There exists an unary FO^2+C query $tn_{\mathcal{T}}$ such that

 $\llbracket \mathsf{tn}_{\mathcal{T}} \rrbracket_{\mathcal{T}} = \llbracket \varphi \rrbracket_{\mathcal{T}}.$

Lemma

Let φ be a unary first-order query, let $\mathcal{T} = (\mathcal{N}, \mathcal{E})$ be an unlabeled tree, and let $n \in \mathcal{N}$.

1. There exists an unary FO^2+C query $tq_{\mathcal{T}}$ such that

 $[\![\mathsf{tq}_{\mathcal{T}}]\!]_{\mathcal{T}'} \neq \emptyset$

if and only if trees \mathcal{T} and \mathcal{T}' are isomorphic.

2. There exists an unary FO^2+C query $tn_{\mathcal{T}}$ such that

$$\llbracket \mathsf{tn}_{\mathcal{T}} \rrbracket_{\mathcal{T}} = \llbracket \varphi \rrbracket_{\mathcal{T}}.$$

3. Let \mathbb{T} be the set of all trees. The query φ is equivalent to FO²+C query

$$Q_{\varphi} := \bigvee_{\mathcal{T}' \in \mathbb{T}} \Big((\exists v \; (\mathsf{tq}_{\mathcal{T}'})) \land \mathsf{tn}_{\mathcal{T}'} \Big).$$

Lemma

Let φ be a unary first-order query, let $\mathcal{T} = (\mathcal{N}, \mathcal{E})$ be an unlabeled tree, and let $n \in \mathcal{N}$.

1. There exists an unary FO^2+C query $tq_{\mathcal{T}}$ such that

 $[\![\mathsf{tq}_{\mathcal{T}}]\!]_{\mathcal{T}'} \neq \emptyset$

if and only if trees \mathcal{T} and \mathcal{T}' are isomorphic.

2. There exists an unary FO^2+C query $tn_{\mathcal{T}}$ such that

$$\llbracket \mathsf{tn}_{\mathcal{T}} \rrbracket_{\mathcal{T}} = \llbracket \varphi \rrbracket_{\mathcal{T}}.$$

3. Let \mathbb{T} be the set of all trees. The query φ is equivalent to FO²+C query

$$Q_{\varphi} := \bigvee_{\mathcal{T}' \in \mathbb{T}} \Big((\exists v \; (\mathsf{tq}_{\mathcal{T}'})) \land \mathsf{tn}_{\mathcal{T}'} \Big).$$

Main challenge Argue that we can conceptually restrict \mathbb{T} to a *finite set*.

Let $\mathcal{T} = (\mathcal{N}, \mathcal{E})$ be a tree and let $n \in \mathcal{N}$.

Definition

The *d*-neighborhood around n is the set of nodes (subtree) reachable from n via a path of at-most d edges.

Definition

Two trees are (d, m)-equivalent if they have the same amount (up-till-m) of each d-neighborhood.

Let $\mathcal{T} = (\mathcal{N}, \mathcal{E})$ be a tree and let $n \in \mathcal{N}$.

Definition

The *d*-neighborhood around n is the set of nodes (subtree) reachable from n via a path of at-most d edges.

Definition

Two trees are (d, m)-equivalent if they have the same amount (up-till-m) of each d-neighborhood.

Let $\mathcal{T} = (\mathcal{N}, \mathcal{E})$ be a tree and let $n \in \mathcal{N}$.

Definition

The *d*-neighborhood around n is the set of nodes (subtree) reachable from n via a path of at-most d edges.

Definition

Two trees are (d, m)-equivalent if they have the same amount (up-till-m) of each d-neighborhood.

Let $\mathcal{T} = (\mathcal{N}, \mathcal{E})$ be a tree and let $n \in \mathcal{N}$.

Definition

The *d*-neighborhood around n is the set of nodes (subtree) reachable from n via a path of at-most d edges.

Definition

Two trees are (d, m)-equivalent if they have the same amount (up-till-m) of each d-neighborhood.

Lemma (Fagin et al.)

If every node has at-most f children, then there is a finite number of distinct d-neighborhoods (up-to-isomorphisms).

Let $\mathcal{T} = (\mathcal{N}, \mathcal{E})$ be a tree and let $n \in \mathcal{N}$.

Definition

The *d*-neighborhood around n is the set of nodes (subtree) reachable from n via a path of at-most d edges.

Definition

Two trees are (d, m)-equivalent if they have the same amount (up-till-m) of each d-neighborhood.

Theorem (Fagin et al.)

Let r be a positive integer. If every node has at-most f children, then there exists d, m that only depend on r, f such that if two trees are (d, m)-equivalent, then they are indistinguishable by r-round EF-games.

Hanf locality: we can restrict the *depth* of trees we consider.

Limitations of Hanf Locality

We consider unranked trees!

All four nodes have distinct *d*-neighborhoods, $d \ge 1$.

Hanf locality: we can restrict the *depth* of trees we consider.

Limitations of Hanf Locality

We consider unranked trees!

All four nodes have distinct *d*-neighborhoods, $d \ge 1$.

Our main technical contribution

For trees, we need a stronger locality notion that takes into account *branching*. *Paper*: provide such a notion and show how it relates to FO²+C and first-order expressivity.

Let $\mathcal{T}_1 = (\mathcal{N}_1, \mathcal{E}_1)$ and $\mathcal{T}_2 = (\mathcal{N}_2, \mathcal{E}_2)$ be two trees.

Definition (Definition 2)

Nodes $n_1 \in \mathcal{N}_1$, $n_2 \in \mathcal{N}_2$ are downward (b, d)-bounded equivalent $(n_1 \approx_{\downarrow b, d} n_2)$ if

- (they have the same node labels); and
- ► d = 0 or else the children of n_1 , n_2 can be grouped into equivalence classes based on $\approx_{\downarrow b, d-1}$, and these classes for the children of n_1 , n_2 have *the same size* (up-till-*b*).

Definition (Definition 5)

Nodes $n_1 \in N_1$, $n_2 \in N_2$ are (b, d)-bounded equivalent $(n_1 \approx_{b,d} n_2)$ if

- d = 0 and $n_1 \approx_{\downarrow b,0} n_2$; or
- $n_1 \approx_{\downarrow b,d} n_2$ and both n_1 and n_2 are roots; or
- ▶ $n_1 \approx_{\downarrow b,d} n_2$, n_1 and n_2 have parents p_1 and p_2 , and $p_1 \approx_{b,d-1} p_2$.

(b, 0)-bounded equivalence classes

(2, 1)-bounded equivalence classes

(3, 1)-bounded equivalence classes

(3, 2)-bounded equivalence classes

(uncolored nodes are all in distinct equivalence classes)

The 2-neighborhoods of (3, 2)-bounded equivalent nodes are *not isomorph*! (but there does exist a 'unique' minimum-sized 2-neighborhood)

Theorem (Lemma 34(3) and consequence of Theorem 37)

- 1. There exists a finite number of distinct (b, d)-bounded equivalence classes (with respect to a given set of node labels).
- 2. Given a (b, d)-bounded equivalence class C, there exists an FO²+C query q such that

 $n \in \llbracket q \rrbracket_{\mathcal{T}}$ if and only if $n \in C$

for every tree \mathcal{T} .

Bounded Equivalence on Trees

Let $\mathcal{T}_1 = (\mathcal{N}_1, \mathcal{E}_1)$ and $\mathcal{T}_2 = (\mathcal{N}_2, \mathcal{E}_2)$ be two trees.

Definition (Definition 29)

Trees \mathcal{T}_1 and \mathcal{T}_2 are (b, d, k)-bounded equivalent $(\mathcal{T}_1 \approx_{b,d,k} \mathcal{T}_2)$ if

- ▶ for each node $n_1 \in N_1$, there is a node $n_2 \in N_2$ with $n_1 \approx_{b,d} n_2$ and vice versa; and
- ▶ for all nodes $m \in (N_1 \cup N_2)$ such that $M_1 \subseteq N_1$ and $M_2 \subseteq N_2$ are all nodes that are (b, d)-bounded equivalent to m, the (b, d')-equivalence classes of ancestors of nodes in M_1 and M_2 at distance 2d' + 1, $0 \le d' \le d$, must have *the same size* (up-till-k).

Theorem (Lemma 34(4))

Given a tree \mathcal{T} , there exists a Boolean FO²+C query q such that

 $\llbracket q \rrbracket_{\mathcal{T}'} \neq \emptyset$ if and only if $\mathcal{T} \approx_{b,d,k} \mathcal{T}'$.

Bounded Equivalence on Trees

Let $\mathcal{T}_1 = (\mathcal{N}_1, \mathcal{E}_1)$ and $\mathcal{T}_2 = (\mathcal{N}_2, \mathcal{E}_2)$ be two trees.

Definition (Definition 29)

Trees \mathcal{T}_1 and \mathcal{T}_2 are (b, d, k)-bounded equivalent $(\mathcal{T}_1 \approx_{b,d,k} \mathcal{T}_2)$ if

- ▶ for each node $n_1 \in N_1$, there is a node $n_2 \in N_2$ with $n_1 \approx_{b,d} n_2$ and vice versa; and
- ▶ for all nodes $m \in (N_1 \cup N_2)$ such that $M_1 \subseteq N_1$ and $M_2 \subseteq N_2$ are all nodes that are (b, d)-bounded equivalent to m, the (b, d')-equivalence classes of ancestors of nodes in M_1 and M_2 at distance 2d' + 1, $0 \le d' \le d$, must have *the same size* (up-till-k).

Theorem (Theorem 32)

Let $n_1 \in \mathcal{N}_1$, $n_2 \in \mathcal{N}_2$, $r \ge 0$, and $d = 7^r - 1$, b = r + 2, k = 4d + 4. If $\mathcal{T}_1 \approx_{b,d,k} \mathcal{T}_2$ and $n_1 \approx_{b,d} n_2$, then n_1 and n_2 are indistinguishable by r-round EF-games.

Conclusion and Future Work

We have shown that any unary first-order query on node-labeled, unranked, and unordered trees can be rewritten into an equivalent query in FO^2+C .

Future work

- Succinctness?
- Can we generalize our results to other classes of graphs?
 E.g., forests or restricted classes of DAGs.
- Can we refine our results, e.g., based on the number of variables used: can we relate FOⁿ to FO²+C with counting quantifiers that can only count to some-function-of-*n*?
- How does our result impact practical query answering on trees? E.g., can an algebraization of FO²+C aid in semi-join-based query optimizations?

References

- [1] Balder ten Cate and Maarten Marx. "Navigational XPath: Calculus and Algebra". In: *SIGMOD Record* 36.2 (2007), pp. 19–26. DOI: 10.1145/1328854.1328858.
- [2] Ronald Fagin, Larry J. Stockmeyer, and Moshe Y. Vardi. "On Monadic NP vs Monadic co-NP". In: Information and Computation 120.1 (1995), pp. 78–92. DOI: 10.1006/inco.1995.1100.
- [3] Jelle Hellings, Catherine L Pilachowski, Dirk Van Gucht, Marc Gyssens, and Yuqing Wu. "From Relation Algebra to Semi-join Algebra: An Approach to Graph Query Optimization". In: *The Computer Journal* 64.5 (2020), pp. 789–811. DOI: 10.1093/comjnl/bxaa031.
- [4] Maarten Marx. "Conditional XPath". In: ACM Transactions on Database Systems 30.4 (2005), pp. 929–959. DOI: 10.1145/1114244.1114247.
- [5] Maarten Marx and Maarten de Rijke. "Semantic Characterizations of Navigational XPath". In: SIGMOD Record 34.2 (2005), pp. 41–46. DOI: 10.1145/1083784.1083792.