
1/8

Expressive Completeness of Two-Variable First-Order Logic with

Counting for First-Order LogicQueries on Rooted Unranked Trees

Jelle Hellings† Marc Gyssens
‡

Jan Van den Bussche
‡

Dirk Van Gucht
§

†Department of Computing and Software
McMaster University

Hamilton, Ontario, Canada
https://jhellings.nl

‡
Data Science Institute

Hasselt University

Diepenbeek, Belgium

§
Luddy School of Informatics, Computing, and Engineering

Indiana University

Bloomington, Indiana, USA

https://jhellings.nl

2/8

The Result

Theorem (Theorem 37)

Let 𝜑 be an unary first-order query.
There exists an FO

2
+C query𝜓 that is equivalent to 𝜑 on trees.

▶ Unary first-order queries on graphs express node predicates:
operations to restrict the considered nodes within more complex graph queries.

▶ FO
2
+C: first-order logic, restricted to two variables, with counting quantifiers such as

∃v (∃=3w edge(v,w)), ∀v (∃≤5w edge(v,w)) .

▶ Trees: node-labeled, unranked, and unordered.

Unranked Nodes do not have a fixed number of children.

Unordered Siblings are not ordered.

Extensions Edge-labeled trees, forests,

2/8

The Result

Theorem (Theorem 37)

Let 𝜑 be an unary first-order query.
There exists an FO

2
+C query𝜓 that is equivalent to 𝜑 on trees.

▶ Unary first-order queries on graphs express node predicates:
operations to restrict the considered nodes within more complex graph queries.

▶ FO
2
+C: first-order logic, restricted to two variables, with counting quantifiers such as

∃v (∃=3w edge(v,w)), ∀v (∃≤5w edge(v,w)) .

▶ Trees: node-labeled, unranked, and unordered.

Unranked Nodes do not have a fixed number of children.

Unordered Siblings are not ordered.

Extensions Edge-labeled trees, forests,

3/8

Related Work

▶ Similar results are known on strings with a successor relationship.

▶ Marx and de Rijke considered ordered trees with a descendant- and sibling-axis.

They showed that unary FO
2 queries are equivalent to Core XPath.

▶ ten Cate and Marx showed that binary FO queries are equivalent to Core XPath 2.0.
▶ Marx showed that binary first-order queries are equivalent to Conditional XPath

(Conditional XPath is an algebraization of FO
3
with a limited transitive closures).

▶ Hellings et al. showed that unary Conditional XPath queries are equivalent to a
variant of FO

2 with fixpoints.

4/8

FO
2
+CQueries on Trees

C1 C2 C3

▶ Root with three children:

(∃=1v (root(v) ∧ (∃=3w edge(v,w)) ∧ C1 ∧ C2 ∧ C3) .

▶ One has two children (all leaves):

C1 := ∃=1w (edge(v,w) ∧ (∃=2v edge(w, v)) ∧
(∃=2v edge(w, v) ∧ leaf (v))).

▶ One is a leaf:

C2 := ∃=1w (edge(v,w) ∧ leaf (w)).
▶ One has three children (all leaves):

C3 := ∃=1w (edge(v,w) ∧ (∃=3v edge(w, v)) ∧
(∃=3v edge(w, v) ∧ leaf (v))).

4/8

FO
2
+CQueries on Trees

C1 C2 C3

▶ Root with three children:

(∃=1v (root(v) ∧ (∃=3w edge(v,w)) ∧ C1 ∧ C2 ∧ C3) .

▶ One has two children (all leaves):

C1 := ∃=1w (edge(v,w) ∧ (∃=2v edge(w, v)) ∧
(∃=2v edge(w, v) ∧ leaf (v))).

▶ One is a leaf:

C2 := ∃=1w (edge(v,w) ∧ leaf (w)).
▶ One has three children (all leaves):

C3 := ∃=1w (edge(v,w) ∧ (∃=3v edge(w, v)) ∧
(∃=3v edge(w, v) ∧ leaf (v))).

4/8

FO
2
+CQueries on Trees

C1 C2 C3

▶ Root with three children:

(∃=1v (root(v) ∧ (∃=3w edge(v,w)) ∧ C1 ∧ C2 ∧ C3) .

▶ One has two children (all leaves):

C1 := ∃=1w (edge(v,w) ∧ (∃=2v edge(w, v)) ∧
(∃=2v edge(w, v) ∧ leaf (v))).

▶ One is a leaf:

C2 := ∃=1w (edge(v,w) ∧ leaf (w)) .
▶ One has three children (all leaves):

C3 := ∃=1w (edge(v,w) ∧ (∃=3v edge(w, v)) ∧
(∃=3v edge(w, v) ∧ leaf (v))).

4/8

FO
2
+CQueries on Trees

Lemma

Let 𝜑 be a unary first-order query, let𝒯 = (N , E) be an unlabeled tree, and let n ∈ N .

1. There exists an unary FO
2
+C query tq𝒯 such that

[[tq𝒯]]𝒯′ ≠ ∅

if and only if trees𝒯 and 𝒯′ are isomorphic.

2. There exists an unary FO
2
+C query tn𝒯 such that

[[tn𝒯]]𝒯 = [[𝜑]]𝒯 .

3. Let T be the set of all trees. The query 𝜑 is equivalent to FO
2
+C query

Q𝜑 :=
∨
𝒯′∈T

(
(∃v (tq𝒯′)) ∧ tn𝒯′

)
.

Main challenge Argue that we can conceptually restrict T to a finite set.

4/8

FO
2
+CQueries on Trees

Lemma

Let 𝜑 be a unary first-order query, let𝒯 = (N , E) be an unlabeled tree, and let n ∈ N .

1. There exists an unary FO
2
+C query tq𝒯 such that

[[tq𝒯]]𝒯′ ≠ ∅

if and only if trees𝒯 and 𝒯′ are isomorphic.

2. There exists an unary FO
2
+C query tn𝒯 such that

[[tn𝒯]]𝒯 = [[𝜑]]𝒯 .

3. Let T be the set of all trees. The query 𝜑 is equivalent to FO
2
+C query

Q𝜑 :=
∨
𝒯′∈T

(
(∃v (tq𝒯′)) ∧ tn𝒯′

)
.

Main challenge Argue that we can conceptually restrict T to a finite set.

4/8

FO
2
+CQueries on Trees

Lemma

Let 𝜑 be a unary first-order query, let𝒯 = (N , E) be an unlabeled tree, and let n ∈ N .

1. There exists an unary FO
2
+C query tq𝒯 such that

[[tq𝒯]]𝒯′ ≠ ∅

if and only if trees𝒯 and 𝒯′ are isomorphic.

2. There exists an unary FO
2
+C query tn𝒯 such that

[[tn𝒯]]𝒯 = [[𝜑]]𝒯 .

3. Let T be the set of all trees. The query 𝜑 is equivalent to FO
2
+C query

Q𝜑 :=
∨
𝒯′∈T

(
(∃v (tq𝒯′)) ∧ tn𝒯′

)
.

Main challenge Argue that we can conceptually restrict T to a finite set.

5/8

Hanf Locality

1

2 2

1 1 3 3 3

Let 𝒯 = (N , E) be a tree and let n ∈ N .

Definition

The d-neighborhood around n is the set of nodes (subtree)

reachable from n via a path of at-most d edges.

Definition

Two trees are (d,m)-equivalent if they have the same
amount (up-till-m) of each d-neighborhood.

5/8

Hanf Locality

1

2 2

1 1 3 3 3

Let 𝒯 = (N , E) be a tree and let n ∈ N .

Definition

The d-neighborhood around n is the set of nodes (subtree)

reachable from n via a path of at-most d edges.

Definition

Two trees are (d,m)-equivalent if they have the same
amount (up-till-m) of each d-neighborhood.

5/8

Hanf Locality

1

2 2

1 1 3 3 3

Let 𝒯 = (N , E) be a tree and let n ∈ N .

Definition

The d-neighborhood around n is the set of nodes (subtree)

reachable from n via a path of at-most d edges.

Definition

Two trees are (d,m)-equivalent if they have the same
amount (up-till-m) of each d-neighborhood.

5/8

Hanf Locality

1

2 2

1 1 3 3 3

Let 𝒯 = (N , E) be a tree and let n ∈ N .

Definition

The d-neighborhood around n is the set of nodes (subtree)

reachable from n via a path of at-most d edges.

Definition

Two trees are (d,m)-equivalent if they have the same
amount (up-till-m) of each d-neighborhood.

Lemma (Fagin et al.)

If every node has at-most f children, then there is a finite
number of distinct d-neighborhoods (up-to-isomorphisms).

5/8

Hanf Locality

1

2 2

1 1 3 3 3

Let 𝒯 = (N , E) be a tree and let n ∈ N .

Definition

The d-neighborhood around n is the set of nodes (subtree)

reachable from n via a path of at-most d edges.

Definition

Two trees are (d,m)-equivalent if they have the same
amount (up-till-m) of each d-neighborhood.

Theorem (Fagin et al.)

Let r be a positive integer. If every node has at-most f
children, then there exists d,m that only depend on r, f such
that if two trees are (d,m)-equivalent, then they are
indistinguishable by r-round EF-games.

5/8

Hanf Locality

Hanf locality: we can restrict the depth of trees we consider.

Limitations of Hanf Locality

We consider unranked trees!

All four nodes have distinct d-neighborhoods, d ≥ 1.

Our main technical contribution

For trees, we need a stronger locality notion that takes into account branching.
Paper: provide such a notion and show how it relates to FO

2
+C and first-order expressivity.

5/8

Hanf Locality

Hanf locality: we can restrict the depth of trees we consider.

Limitations of Hanf Locality

We consider unranked trees!

All four nodes have distinct d-neighborhoods, d ≥ 1.

Our main technical contribution

For trees, we need a stronger locality notion that takes into account branching.
Paper: provide such a notion and show how it relates to FO

2
+C and first-order expressivity.

6/8

Bounded Equivalence on Nodes

Let 𝒯1 = (N1, E1) and𝒯2 = (N2, E2) be two trees.

Definition (Definition 2)

Nodes n1 ∈ N1, n2 ∈ N2 are downward (b, d)-bounded equivalent (n1 ≈↓b,d n2) if
▶ (they have the same node labels); and

▶ d = 0 or else the children of n1, n2 can be grouped into equivalence classes based on

≈↓b,d−1, and these classes for the children of n1, n2 have the same size (up-till-b).

Definition (Definition 5)

Nodes n1 ∈ N1, n2 ∈ N2 are (b, d)-bounded equivalent (n1 ≈b,d n2) if
▶ d = 0 and n1 ≈↓b,0 n2; or
▶ n1 ≈↓b,d n2 and both n1 and n2 are roots; or
▶ n1 ≈↓b,d n2, n1 and n2 have parents p1 and p2, and p1 ≈b,d−1 p2.

6/8

Bounded Equivalence on Nodes

6/8

Bounded Equivalence on Nodes

(b, 0)-bounded equivalence classes

6/8

Bounded Equivalence on Nodes

(2, 1)-bounded equivalence classes

6/8

Bounded Equivalence on Nodes

(3, 1)-bounded equivalence classes

6/8

Bounded Equivalence on Nodes

(3, 2)-bounded equivalence classes

(uncolored nodes are all in distinct equivalence classes)

6/8

Bounded Equivalence on Nodes

The 2-neighborhoods of (3, 2)-bounded equivalent nodes are not isomorph!
(but there does exist a ‘unique’ minimum-sized 2-neighborhood)

6/8

Bounded Equivalence on Nodes

Theorem (Lemma 34(3) and consequence of Theorem 37)

1. There exists a finite number of distinct (b, d)-bounded equivalence classes
(with respect to a given set of node labels).

2. Given a (b, d)-bounded equivalence class C, there exists an FO
2
+C query q such that

n ∈ [[q]]𝒯 if and only if n ∈ C

for every tree𝒯.

7/8

Bounded Equivalence on Trees

Let 𝒯1 = (N1, E1) and𝒯2 = (N2, E2) be two trees.

Definition (Definition 29)

Trees𝒯1 and𝒯2 are (b, d, k)-bounded equivalent (𝒯1 ≈b,d,k 𝒯2) if

▶ for each node n1 ∈ N1, there is a node n2 ∈ N2 with n1 ≈b,d n2 and vice versa; and

▶ for all nodes m ∈ (N1 ∪ N2) such that M1 ⊆ N1 and M2 ⊆ N2 are all nodes that are

(b, d)-bounded equivalent to m, the (b, d ′)-equivalence classes of ancestors of nodes
in M1 and M2 at distance 2d ′ + 1, 0 ≤ d ′ ≤ d , must have the same size (up-till-k).

Theorem (Lemma 34(4))

Given a tree 𝒯, there exists a Boolean FO
2
+C query q such that

[[q]]𝒯′ ≠ ∅ if and only if 𝒯 ≈b,d,k 𝒯
′.

7/8

Bounded Equivalence on Trees

Let 𝒯1 = (N1, E1) and𝒯2 = (N2, E2) be two trees.

Definition (Definition 29)

Trees𝒯1 and𝒯2 are (b, d, k)-bounded equivalent (𝒯1 ≈b,d,k 𝒯2) if

▶ for each node n1 ∈ N1, there is a node n2 ∈ N2 with n1 ≈b,d n2 and vice versa; and

▶ for all nodes m ∈ (N1 ∪ N2) such that M1 ⊆ N1 and M2 ⊆ N2 are all nodes that are

(b, d)-bounded equivalent to m, the (b, d ′)-equivalence classes of ancestors of nodes
in M1 and M2 at distance 2d ′ + 1, 0 ≤ d ′ ≤ d , must have the same size (up-till-k).

Theorem (Theorem 32)

Let n1 ∈ N1, n2 ∈ N2, r ≥ 0, and d = 7
r − 1, b = r + 2, k = 4d + 4.

If 𝒯1 ≈b,d,k 𝒯2 and n1 ≈b,d n2, then n1 and n2 are indistinguishable by r-round EF-games.

8/8

Conclusion and Future Work

We have shown that any unary first-order query on node-labeled, unranked, and

unordered trees can be rewritten into an equivalent query in FO
2
+C.

Future work

▶ Succinctness?

▶ Can we generalize our results to other classes of graphs?

E.g., forests or restricted classes of DAGs.

▶ Can we refine our results, e.g., based on the number of variables used: can we relate

FO
n
to FO

2
+C with counting quantifiers that can only count to some-function-of-n?

▶ How does our result impact practical query answering on trees?

E.g., can an algebraization of FO
2
+C aid in semi-join-based query optimizations?

9/8

References

[1] Balder ten Cate and Maarten Marx. “Navigational XPath: Calculus and Algebra”. In:

SIGMOD Record 36.2 (2007), pp. 19–26. doi: 10.1145/1328854.1328858.

[2] Ronald Fagin, Larry J. Stockmeyer, and Moshe Y. Vardi. “On Monadic NP vs

Monadic co-NP”. In: Information and Computation 120.1 (1995), pp. 78–92. doi:

10.1006/inco.1995.1100.

[3] Jelle Hellings, Catherine L Pilachowski, Dirk Van Gucht, Marc Gyssens, and

Yuqing Wu. “From Relation Algebra to Semi-join Algebra: An Approach to Graph

Query Optimization”. In: The Computer Journal 64.5 (2020), pp. 789–811. doi:
10.1093/comjnl/bxaa031.

[4] Maarten Marx. “Conditional XPath”. In: ACM Transactions on Database Systems 30.4
(2005), pp. 929–959. doi: 10.1145/1114244.1114247.

[5] Maarten Marx and Maarten de Rijke. “Semantic Characterizations of Navigational

XPath”. In: SIGMOD Record 34.2 (2005), pp. 41–46. doi: 10.1145/1083784.1083792.

https://doi.org/10.1145/1328854.1328858
https://doi.org/10.1006/inco.1995.1100
https://doi.org/10.1093/comjnl/bxaa031
https://doi.org/10.1145/1114244.1114247
https://doi.org/10.1145/1083784.1083792

	References

